Контрольная работа по мат. анализу 28
Контрольная работа № 2 по математике
Вариант 20
Задание № 1. (0-3 балла) Исследовать сходимость рядов:
А) ; б)
; в)
.
А) ;
Исследуем сходимость этого ряда с помощью признака сравнения в предельной форме. Сравним данный ряд с рядом , который сходится (р=2>1). Найдем предел отношения общих членов этих рядов при
.
Так как предел получился конечный, не равный нулю, то ряды ведут себя одинаково, следовательно, данный ряд также сходится.
Б) ;
Исследуем ряд На абсолютную сходимость. Рассмотри ряд из модулей:
Воспользуемся радикальным признаком Коши. Здесь
Вычислим
Полученное значение меньше 1, следовательно, ряд сходится абсолютно.
Найдём интервал сходимости ряда ,
Ряд сходится на интервале Абсолютно.
Исследуем поведение ряда на концах интервала сходимости:
При x=3 получим ряд , данный ряд является знакоположительным, так как
Ряд расходится как гармонический, следовательно, ряд
так же расходится.
При х=-1 получим ряд – данный ряд сходится условно по признаку Лейбница (
)
Имеем интервал абсолютной сходимости ряда: , сходится условно при х=-1
Задание № 2. (0-1 балла) Функцию разложить в ряд Тейлора в окрестности точки
. Найти область сходимости полученного ряда:
,
.
Используем стандартные разложения:
, тогда
Найдём интервал сходимости ряда ,
Ряд сходится на интервале .
Задание № 3. (0-1 балла) Проверить, удовлетворяет ли функция указанному уравнению:
,
.
Решение
Найдём частные производные:
Тогда - верно
Ответ: удовлетворяет
Задание № 4. (0-2 балла) Исследовать на экстремум функцию:
.
Решение
1. Найдем частные производные.
2. Решим систему уравнений.
-6•x+6 = 0
-6•y-6 = 0
Получим:
X = 1
Y = -1
Количество критических точек равно 1.
M1(1;-1)
2. Найдем частные производные второго порядка.
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(1;-1)
AC - B2 = 36 > 0 и A < 0 , то в точке M1(1;-1) имеется максимум z(1;-1) = 6
Ответ: В точке M1(1;-1) имеется максимум z(1;-1) = 6;
Задание № 5. (0-4 баллов) Найти общее решение обыкновенных дифференциальных уравнений первого порядка:
А) ; б)
; в)
;
Г) .
Решение
А) ;
Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:
Посчитаем интегралы отдельно:
Тогда: или
Б) ;
Это однородное дифференциальное уравнение. Его вид позволяет сделать замену
и свести к уравнению с разделяющимися переменными, получаем
,
Уравнение примет вид ,
Разделяем переменные и интегрируем: . Посчитаем отдельно:
Тогда .
Выполнив обратную замену, находим общий интеграл исходного уравнения – решение, записанное в неявном виде: .
В) ;
Приведём данное уравнение к виду: - это уравнение вида
- линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки
где U и V две неизвестные функции. Подставляя в исходное уравнение
получим
Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве V одно из частных решений уравнения
Тогда исходное дифференциальное уравнение примет вид
Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:
,
Интегрируя, находим
Подставим найденную функцию V во второе уравнение . Получим
откуда
Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию И:
Возвращаясь к функции У, получим
Г)
Данное дифференциальное уравнение является уравнением в полных дифференциалах. Оно имеет вид .
Проверим выполнение условия:
-условие выполняется.
Поэтому - дифференциал некоторой функции
. Следовательно данное уравнение может быть записано в виде
При этом ,
.
Интегрируем первое равенство по х, получим , где
- неизвестная функция, которую ещё предстоит найти.
Дифференцируем U по у, имеем .
Тогда используя то, что , получим
или
, тогда
, и, следовательно,
Ответ: а) , б)
, в)
Г)
Задание № 6. (0-2 балла) Найти решение обыкновенного дифференциального уравнения второго порядка, удовлетворяющее начальным условиям:
,
,
.
Решение
Решим соответствующее однородное уравнение
Составим характеристическое уравнение
Так как его корни действительные (), общее решение однородного уравнения имеет вид
.
Частное решение неоднородного уравнения будем искать в виде , тогда
Подставим в исходное
Приравнивая коэффициенты при косинусе и синусе в левой и правой части получим систему:
Общее решение неоднородного примет вид:
Используем начальные условия:,
.
Ответ:
Задание № 7. (0-1 балла) Решить систему обыкновенных дифференциальных уравнений:
Решение
Продифференцируем по t первое уравнение
Исключая с помощью второго уравнения и с помощью первого уравнения системы, получим
Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение. Характеристическое уравнение имеет корни
и
. Следовательно, общее решение для х будет
.
Подставляя х в первое уравнение, находим общее решение для у
Ответ:
Задание № 8. (0-2 балла) Вычислить криволинейные интегралы:
А) , б)
,
- дуга астроиды
,
между точками
и
.
Решение
А) Формула для вычисления: .
В нашем случае: . Тогда
б) Так как кривая L задана параметрически уравнениями
Тогда в нашем случае:
Ответ: а) Б)
Задание № 9. (0-1 балл) Вычислить двойной интеграл по области
, ограниченной указанными линиями:
,
:
,
,
.
Решение
Изобразим область интегрирования:
Тогда получим:
Ответ:
Задание № 10. (0-2 балла) Вычислить поверхностный интеграл первого рода
по поверхности
, где
- часть плоскости
, отсеченная координатными плоскостями.
,
:
.
Решение
Так как :
, то разделив обе части уравнения на 2, получим уравнение плоскости
в отрезках:
.
Получаем :
,
,
,
.
Из уравнения
:
Выразим z:
.
.
Дифференциал площади равен:
Чтобы расставить границы интегрирования, найдем уравнение стороны АВ:
Ответ:
Задание № 11. (0-1 балла) Вычислить тройной интеграл :
,
:
,
,
.
Решение
Задание № 12. (0-2 балла) Разложить функцию в ряд Фурье в указанном интервале:
Решение
По формуле
Вычислим коэффициенты Фурье.
,
следовательно
,
Ряд Фурье имеет вид:
Задание № 13. (0-2 балла) Найти общее решение дифференциального уравнения в частных производных второго порядка:
.
Решение
Это уравнение параболического типа, так как для него
Уравнение характеристик
Пусть
Находим их частные производные
Получаем
Подставляя В заданное уравнение, получаем
Введем новую переменную
Тогда
Получили уравнение типа
Решим систему уравнений
Теперь запишем общий интеграл
Выполним обратную замену переменных
Задание № 14. (0-1 балла) Решить задачу Коши для уравнения колебания бесконечной струны:
,
,
.
Решение
Имеем
Воспользуемся формулой Даламбера
Учитываем, что а=1. Получим
Посчитаем отдельно:
Ответ:
Задание № 15. (0-2 балла) Найти решение задачи Коши для системы обыкновенных дифференциальных уравнений, применяя преобразование Лапласа:
Решение
I. Имеем
II. Запишем систему операторных уравнений
Получили систему линейных дифференциальных уравнений относительно и
. Решим систему по формулам Крамера:
Таким образом,
III. Перейдём к оригиналам.
Из равенств ,
,
и
Следовательно, решение системы будет .
Ответ:
< Предыдущая | Следующая > |
---|