24. Центральная предельная теорема Ляпунова. Система случайных величин

Теорема. Если случайная величина Х представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то Х имеет распределение, близкое к нормальному.

На практике для большинства случайных величин выполняются условия теоремы Ляпунова.

Система случайных величин.

Рассмотренные выше случайные величины были одномерными, т. е. определялись одним числом, однако, существуют также случайные величины, которые определяются двумя, тремя и т. д. числами. Такие случайные величины называются двумерными, трехмерными и т. д.

В зависимости от типа, входящих в систему случайных величин, системы могут быть дискретными, непрерывными или смешанными, если в систему входят различные типы случайных величин.

Более подробно рассмотрим системы двух случайных величин.

Определение. Законом распределения системы случайных величин называется соотношение, устанавливающее связь между областями возможных значений системы случайных величин и вероятностями появления системы в этих областях.

Определение. Функцией распределения системы двух случайных величин называется функция двух аргументов F(X, Y), равная вероятности совместного выполнения двух неравенств X<X, Y<Y.

Отметим следующие свойства функции распределения системы двух случайных величин:

1) Если один из аргументов стремится к плюс бесконечности, то функция распределения системы стремится к функции распределения одной случайной величины, соответствующей другому аргументу.

2) Если оба аргумента стремятся к бесконечности, то функция распределения системы стремится к единице.

3) При стремлении одного или обоих аргументов к минус бесконечности функция распределения стремится к нулю.

4) Функция распределения является неубывающей функцией по каждому аргументу.

5) Вероятность попадания случайной точки (X, Y) в произвольный прямоугольник со сторонами, параллельными координатным осям, вычисляется по формуле:

Яндекс.Метрика