logo

Решение контрольных по математике!!!

Home Методички по математике Краткий курс лекций по аналитической геометрии 3.1. Линии второго порядка. Каноническое уравнение эллипса

3.1. Линии второго порядка. Каноническое уравнение эллипса

Определение. Эллипсом называется геометрическое место точек плоскости для которых сумма расстояний до двух фиксированных точек и , называемых фокусами, есть величина постоянная.

Выведем уравнение эллипса в соответствии с данным определением. Для этого зафиксируем декартову систему координат ХОу как показано на рисунке.

Согласно определению эллипса для точки М имеем , где А - некоторая постоянная. В координатах

.

Подставим эти значения в основное равенство, получим уравнение

.

После стандартного метода "уничтожения" радикалов (возведения обеих частей уравнения в квадрат (см. пример 1.)) получим каноническое уравнение эллипса

(1)

Где . Величины А и B, называются соответственно Большой и Малой Полуосями эллипса.

Замечание. В частности, при из (1) имеем уравнение окружности радиуса А с центром в начале координат

. (2)

Свойства эллипса:

1. Эллипс имеет две взаимно перпендикулярные оси симметрии Х и У (их называют главными осями эллипса) и центр симметрии О (его называют центром эллипса).

Утверждение следует из того, что замена координат на или или не изменяет вид уравнения (1). При этом, в первом случае, при преобразовании , имеем ось симметрии У, во втором - ось симметрии , а в третьем - центр симметрии О.

2. Эллипс полностью содержится в прямоугольнике

.

Из уравнения (1) имеем . Аналогично, .

3. Эллипс получается равномерным сжатием окружности.

Рассмотрим окружность . Произведем равно-мерное сжатие плоскости к оси Ох: . Подставим эти значения в уравнение окружности (2), имеем . После деления на получим уравнение (1).

Построим эллипс на основании его свойств и уравнения (1)

Пример 1. Написать уравнение кривой по которой движется точка M, если сумма расстояний от нее до точек и остается постоянной и равной .

Решение. Согласно условию задачи

.

Откуда

.

Возведем обе части уравнения в квадрат и приведем подобные члены, получим

Еще раз возводим в квадрат и приведем подобные члены

Пример 2. На эллипсе найти точку, расстояние от которой до фокуса в четыре раза больше расстояния чем до фокуса .

Решение. Запишем уравнение эллипса в каноническом виде:

.

Найдем координаты фокусов эллипса

.

Согласно условию задачи

Выразим Из уравнения эллипса , подставим в данное уравнение и приведем подобные члены, получим квадратное уравнение Его корни - лишний корень, т. к. . Тогда . Отв.

 
Яндекс.Метрика
Наверх