7.4. Положительные числовые ряды. Достаточные признаки сходимости

Определение. Числовой ряд (1.1) называется положительным, если все его слагаемые An – положительные числа. Частичная сумма Sn = а1+ а2 + …+ аN такого ряда при любом значении N тоже, естественно, положительна, причем с увеличением номера N она монотонно возрастает. Следовательно, имеются всего две возможности:

1)

2) где S – некоторое положительное число.

В первом случае ряд расходится, во втором сходится. Какая из этих двух возможностей реализуется, зависит, очевидно, от поведения слагаемых ряда при N® ∞. Если эти слагаемые стремятся к нулю, причем делают это достаточно быстро, то ряд будет сходиться. А если они не стремятся к нулю, или стремятся к нему, но недостаточно быстро, то ряд будет расходиться.

Например, у гармонического ряда (1.16) слагаемые хоть и убывают, стремясь к нулю, но делают это довольно медленно. Поэтому гармонический ряд оказался расходящимся. А вот у положительного ряда (1.6) слагаемые стремятся к нулю гораздо быстрее, поэтому он оказался сходящимся.

Еще пример. Ряд вида

(1.18)

Называется Обобщенным гармоническим рядом (при это будет обычный гармонический ряд). Если исследовать его на сходимость – расходимость аналогично тому, как исследовался гармонический ряд (1.16) (с помощью рисунка, подобного рисунку 7.1), то можно установить (попробуйте это сделать самостоятельно), что обобщенный гармонический ряд расходится при (его сумма ) и сходится при (его сумма S – конечное положительное число). И это понятно: при слагаемое обобщенного гармонического ряда убывают медленнее слагаемых гармонического ряда. А так как гармонический ряд расходится (скорость убывания его слагаемых недостаточна для сходимости), то тем более при будет расходиться и обобщенный гармонический ряд (1.18). А при слагаемые ряда (1.18) будут, очевидно, убывать быстрее, чем слагаемые гармонического ряда (1.16). И этой возросшей скорости убывания оказывается достаточно для сходимости ряда (1.18).

Можно эти соображения изложить строже, в виде так называемого Признака сравнения положительных числовых рядов.

Его суть в следующем. Пусть

(1.19)

(1.20)

- два произвольных положительных числовых ряда. И пусть для всех N=1,2,… . То есть (1.20) – ряд с бóльшими членами, чем ряд (1.19). Тогда очевидно, что:

1) Если ряд с бóльшими членами сходится, то и ряд с меньшими членами сходится.

2) Если ряд с меньшими членами расходится (его сумма равна +∞), то и ряд с бóльшими членами тоже расходится (его сумма тем более равна +∞).

3) Если ряд с бóльшими членами сходится (его сумма равна +∞), то про ряд с меньшими членами ничего сказать нельзя.

4) Если ряд с меньшими членами сходится (его сумма – число), то про ряд с бóльшими членами ничего сказать нельзя.

Замечание 1. В формулировке всех четырех пунктов признака сравнения можно условие , с помощью которого сравниваются ряды и которое должно выполняться для всех N=1,2,3,…, заменить на это же условие , справедливое не для всех N, а лишь начиная с некоторого номера N, то есть для N>N, ибо отбрасывание конечного числа членов ряда не влияет на его сходимость.

Замечание 2. Признак сравнения положительных числовых рядов допускает обобщение. А именно, если существует конечный и отличный от нуля предел

, (1.21)

То есть если

при (1.22)

(Bn эквивалентны Lan при ), то положительные числовые ряды (1.19) и (1.20) сходятся или расходятся одновременно. Данное замечание оставим без доказательства.

Пример 5. Ряд

(1.23)

Расходится (его сумма равна +∞). Действительно, сравнивая этот ряд с гармоническим (1.16), слагаемые которого меньше слагаемых ряда (1.23) для всех N>1, сразу приходим к этому выводу на основании пункта 2 признака сравнения. Его расходимость следует и из того, что это – обобщенный гармонический ряд (1.18) при .

Пример 6. Ряд

(1.24)

- это положительный ряд с меньшим для всех N>1 слагаемыми, чем ряд

(1.25)

Но ряд (1.25) представляет собой сумму бесконечной геометрической прогрессии со знаменателем . Такой ряд, согласно (1.15), сходится и имеет сумму S=1. Но тогда сходится и меньший ряд (1.24), причем его сумма .

Пример 7. Ряд - положительный числовой ряд, у которого слагаемые

при .

Но ряд расходится в силу (1.17). Значит, в соответствии с (1.22), расходится и данный ряд со слагаемыми An.

Признак Даламбера. Этот признак состоит в следующем. Пусть - положительный числовой ряд. Найдем предел Q отношения последующего члена ряда к предыдущему:

(1.26)

Французский математик и механик 19-го века Даламбер доказал, что при Q<1 ряд Сходится; при Q>1 он расходится; при Q=1 вопрос о сходимости - расходимости ряда остается открытым. Доказательство признака Даламбера опускаем.

Пример 8. Исследовать на сходимость – расходимость положительный числовой ряд .

Решение. Применим к этому ряду признак Даламбера. Для этого по формуле (1.26) вычислим Q:

Так как , то данный ряд сходится.

Интегральный признак Коши. Этот признак состоит в следующем. Если члены An положительного ряда монотонно убывают, то этот ряд и несобственный интеграл сходятся или расходятся одновременно. Здесь - непрерывная монотонно убывающая функция, принимающая при X = N значения An членов ряда.

Доказательство интегрального признака Коши, как и признака Даламбера, опустим. Это доказательство, кстати, использует в принципе ту же геометрическую идею, что была применена при доказательстве расходимости гармонического ряда (1.16).

Пример 9. Исследуем на сходимость – расходимость обобщенный гармонический ряд (1.18). При мы получаем гармонический ряд (1.16), который, как мы доказали, расходится. При ряд (1.18) тем более будет расходиться, так как его члены больше членов гармонического ряда. Осталось исследовать случай . Применим к ряду (1.18) при интегральный признак Коши. Для этого вычислим несобственный интеграл

.

В результате получили конечное число . Таким образом, сходится. Но тогда, по интегральному признаку Коши, сходится и ряд (1.18). То есть

(1.27)

© 2011-2024 Контрольные работы по математике и другим предметам!