logo

Решение контрольных по математике!!!

Вариант № 06

Задача 1.Найти общее решение дифференциального уравнения.

, (1) – уравнение с разделяющимися переменными

Интегрируя обе части уравнения, получим:

Общее решение уравнения (1):

Задача 2.Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Найдем общее решение дифференциального уравнения с разделяющимися переменными

Интегрируя обе части уравнения, получим:

Общее решение уравнения:

Подставляем в полученное решение начальное условие:

Значит, искомое частное решение:

Задача 3. Решить дифференциальное уравнение (1)

Применим подстановку

Тогда:

Интегрируя, получим общий интеграл уравнения

В результате общий интеграл уравнения имеет вид:

Подставляя значение , получим общий интеграл уравнения (1):

Задача 4. Решить дифференциальное уравнение (1)

Составим определитель

Положим , гдеОпределяются из системы уравнений:

Положим в уравнении (1)

Получим:

Применим подстановку

Тогда:

Интегрируя обе части уравнения, получим:

Учитывая, что , запишем общее решение уравнения (1):

Задача 5.Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Ищем общее решение линейного неоднородного дифференциального уравнения 1-го порядка

(1)

Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка

Общее решение этого уравнения:

Применим метод вариации постоянных:

Дифференцируем Y По X:

Подставляем полученные значения в уравнение (1):

Следовательно, общее решение линейного неоднородного дифференциального уравнения 1-го порядка:

Подставляем в полученное решение начальное условие:

Значит, искомое частное решение:

Задача 6. Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Ищем общее решение уравнения Бернулли: (1)

Применим подстановку

Подставляем в уравнение (1):

Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка

Общее решение этого уравнения:

Применим метод вариации постоянных:

Дифференцируем Z По X:

Подставляем полученные значения в уравнение (1):

Значит:

Следовательно, общее решение уравнения Бернулли (1):

Подставляем в полученное решение начальное условие:

Значит, искомое частное решение:

Задача 7. Найти общий интеграл Дифференциального уравнения.

Или (1)

Так как , значит мы имеем уравнение в полных дифференциалах

Находим

Общий интеграл Дифференциального уравнения

Задача 8. Определить тип дифференциального уравнения, найти общее решение и построить интегральную кривую, проходящую через точку М.

Ищем общее решение линейного неоднородного дифференциального уравнения 1-го порядка

(1)

Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка

Общее решение однородного уравнения:

Применим метод вариации постоянных:

Следовательно, общим решением является семейство кривых:

Из условий в точке М найдем:

Отсюда искомая интегральная кривая:

Задача 9. Решить дифференциальное уравнение (1) -явно не содержит

Полагая , имеем , тогда уравнение (1) принимает вид:

– уравнение с разделяющимися переменными относительно .

Общее решение этого уравнения:

Задача 10. Найти решение Дифференциального уравнения, удовлетворяющее заданным условиям.

Ищем общее решение дифференциального уравнения 2-го порядка:

Заметим, что:

Тогда

Положим

Подставляем в исходное уравнение

Полагая , имеем , тогда уравнение принимает вид:

- уравнение Бернулли

Подстановка

Подставляем в уравнение

Общее решение этого уравнения:

Из условия имеем

Из условия имеем

Частное решение Дифференциального уравнения, удовлетворяющее заданным условиям:

Задача 11. Найти общее решение дифференциального уравнения (1)

- линейное однородное уравнение 2 порядка с постоянными коэффициентами

Характеристическое уравнение:

Следовательно, фундаментальную систему решений уравнения (1) образуют функции

общее решение однородного уравнения (1) имеет вид: .

Задача 12. Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

(1)

Характеристическое уравнение:

Следовательно, фундаментальную систему решений уравнения (1) образуют функции

общее решение уравнения (1) имеет вид: .

Продифференцируем

Из указанных условий имеем:

Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:

Задача 13. Найти общее решение дифференциального уравнения (1)

- линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

Характеристическое уравнение:

общее решение однородного уравнения имеет вид: .

Структура общего решения неоднородного уравнения (1) имеет вид: ;

где - общее решение однородного уравнения, а функция - частное решение неоднородного уравнения.

Так как степень правой части не совпадает с корнем характеристического уравнения, то частное решение ищем в виде:

Подставляем частное решение в уравнение (1) и находим неопределенные коэффициенты:

Следовательно, Общее решение неоднородного уравнения (1):

Задача 14. Найти общее решение дифференциального уравнения (1)

- линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

Характеристическое уравнение:

общее решение однородного уравнения имеет вид: .

Применим принцип наложения решений (суперпозиции).

Структура общего решения неоднородного уравнения (1) имеет вид: ;

где - общее решение однородного уравнения, а функции - частные решения следующих уравнений:

;

;

Причём частные решения ищем в виде: ,

Подставляем поочередно частные решения в соответствующие уравнения и находим неопределенные коэффициенты: ;

Следовательно, Общее решение неоднородного уравнения (1):

Задача 15. Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.

Найдем решение линейного неоднородного уравнения 2 порядка с постоянными коэффициентами

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами

(1)

Характеристическое уравнение:

Следовательно, фундаментальную систему решений уравнения (1) образуют функции

общее решение однородного уравнения (1) имеет вид: .

РЕшение линейного неоднородного уравнения ищем методом вариации произвольных постоянных: , а неизвестные функции определяем из системы уравнений:

Следовательно, Общее решение неоднородного уравнения (1):

Продифференцируем полученное решение

Из условия имеем:

Из условия имеем:

Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:

Задача 16. Найти общее решение дифференциального уравнения (1)

- линейное неоднородное уравнение 4-го порядка с постоянными коэффициентами и специальной правой частью (многочлен)

Ищем решение линейного однородного уравнения 4 порядка с постоянными коэффициентами:

Характеристическое уравнение:

Следовательно, фундаментальную систему решений уравнения (1) образуют функции

общее решение однородного уравнения имеет вид: .

Частное решение Ищем в виде: ;

Подставляем в неоднородное уравнение (1):

Следовательно, Общее решение неоднородного уравнения (1):

Задача 17. Найти общее решение уравнения Эйлера: (1)

Введем новую независимую переменную .

Положим , тогда

Подставим в уравнение (1) и получим - линейное однородное уравнение 2 порядка с постоянными коэффициентами.

Характеристическое уравнение:

общее решение однородного уравнения имеет вид: .

Значит, Общее решение уравнения Эйлера (1):

Задача 18. Решить систему дифференциальных уравнений

(1)

(корни характеристического уравнения )

Дифференцируя первое уравнение по , получим:

Из первого уравнения выразим значение

Значит: , а также

Дифференцируя еще раз уравнение по , получим:

Из третьего уравнения выразим значение

Подставим полученное значение в продифференцированное уравнение:

Получили линейное однородное уравнение 3-го порядка с постоянными коэффициентами

Характеристическое уравнение:

Следовательно, общее решение однородного уравнения имеет вид: .

Следовательно:

Значение Выразим из:

.

 
Яндекс.Метрика
Наверх