Вариант 08

Вариант 8

1)Разложить в ряд Фурье функцию , заданную с помощью графика. Построить график суммы полученного ряда Фурье и записать 4 первых ненулевых члена этого ряда.

Функцию на графике можно представить в виде:

Разложим функцию В ряд Фурье с периодом:

Сумма ряда : 1) в точках непрерывности:

2) в точках разрыва:

2)Разложить в ряд Фурье по косинусам функцию , определенную на заданном интервале. Построить график суммы полученного ряда Фурье и записать 4 первых ненулевых члена этого ряда.

Продолжим функцию четным образом до периода :

Сумма ряда : 1) в точках непрерывности:

2) в точках разрыва: . Точек разрыва нет.

3. Решить задачу Штурма – Лиувилля . Найти собственные функции, проверить их ортогональность.

Разложить функцию в ряд по собственным функциям.

Решение задачи Штурма – Лиувилля ищем в виде:

Решение ищем в виде:

Характеристическое уравнение

1)  - кратный корень.

Общее решение имеет вид: ,

Граничные условия: - тривиальное решение

2)

Общее решение имеет вид:

Граничные условия:

Т. к. - тривиальное решение.

3) 

Общее решение имеет вид:

Граничные условия:

Система собственных функций при , где

Проверка на ортогональность собственных функций

Система собственных функций ортогональна.

Разложим в ряд по собственным функциям :

Согласно теореме Стеклова функцию можно разложить в ряд Фурье: ,

Где

Значит

4. Решить задачу о свободном колебании струны длины м с заданными краевыми условиями ; . Вычислить приближённое отклонение середины струны при сек, используя для этого первые три ненулевых слагаемых в разложении в ряд функции . Положить .

Решение

Будем искать решение уравнения свободных колебаний струны , удовлетворяющее однородным граничным условиям: и начальным условиям И представимое в виде произведения.

Подставляем его в исходное уравнение

Отсюда

Следовательно: Граничные условия

При имеем задачу Штурма – Лиувилля для X(x): .

Решение ищем в виде:

Характеристическое уравнение

1)  - кратный корень.

Общее решение имеет вид:

Граничные условия: - тривиальное решение

2) , где - действительное число

Общее решение имеет вид:

Граничные условия:

Т. к. - тривиальное решение.

3) , - действительное число

Общее решение имеет вид:

Граничные условия:

Если

При этом пусть С2=1, тогда , при .

Этим же значениям соответствуют решения уравнения , имеющие вид:

Частное решение уравнения свободных колебаний струны:

Общее решение имеет вид:

Начальные условия Значит

Разлагаем в ряд Фурье по синусам на промежутке :

Сравнивая ряды, видим:

Общее решение представится в виде:

Приближенное отклонение середины струны ( ) в момент времени :

, т. к.

для любого

© 2011-2024 Контрольные работы по математике и другим предметам!