18. Композиция n независимых испытаний

Испытания (n - испытаний) называются независимыми, если неоднозначность исхода каждого из испытаний определена не связанными между собой группами факторов.

Событие A1: в результате проведения композиционного испытания в первом испытании произошло событие . Тогда

Событие An: в результате проведения композиционного испытания в первом испытании произошло событие . Тогда

i=1, ..., n

Рассмотрим событие:

В силу определения независимости испытаний очевидно, что:

.

Следовательно: .

На практике не строят композиционных пространств, а записывают формально неправильную формулу: P(A1A2...An)=P(A1)P(A2)...P(An).

Композиционное пространство имеет вид:

j1=1, ..., m1; j2=1, ..., m2; jn=1, ..., mn;

Общая структура независимых событий в композиционном пространстве имеет вид:

1-е событие -

Это событие, которое происходит в 1-м вероятностном пространстве

2-е событие -

Это событие, которое происходит во 2-м вероятностном пространстве

N - событие -

Это событие, которое происходит в n-м вероятностном пространстве

Рассмотрим два вероятностных пространства.

I

II

Очевидно, что неопределенность испытания до испытания в первом вероятностном пространстве выше, чем во втором. Действительно, до испытания в I нельзя ни одному из событий отдать предпочтения, а во II событие E3 происходит чаще.

Энтропия - мера неопределенности исхода испытания (до испытания).

Первым, кто функционально задал выражение для энтропии был Шеннон.

,

Для вероятностного пространства:

Энтропия задается выражением: . Если P1=0, то Pi×logPi­=0.

Самим показать, что:

Если вероятностное пространство не имеет определенности, т. е. какое-то из Pi=1, а остальные равны 0, то энтропия равна нулю.

Если элементарный исход равновероятен, т. е. , то энтропия принимает максимальное значение.

0£Pi£1,

1)

,

Т. о. вероятности p1, p2, ..., ps обращаются в ноль, например pi, которая равна 1. Но log1=0. Остальные числа также обращаются в 0, т. к. .

2) Докажем, что энтропия системы с конечным числом состояний достигае максимума, когда все состояния равновероятны. Для этого рассмотрим энтропию системы как функцию вероятностей p1, p2, ..., ps и найдем условный экстремум этой функции, при условии, что .

Пользуясь методом неопределенных множителей Лагранжа, будем искать экстремум функции: .

Дифференцируя по p1, p2, ..., ps и приравнивая производные нулю получим систему:

i=1, ..., s

Откуда видно, что экстремум достигается при равных между собой p1.

Т. к. , то p1= p2=, ..., = ps= 1/s.

Еденицей измерения энтропии является энтропия вероятностного пространства вида:

, которая называется 1 бит.

Неопределенность исхода испытания до испытания автоматически определяет информативность исхода испытания после испытания. Поэтому в битах также измеряется информативность исхода.

Рассмотрим два вероятностных пространства:

Проводим композицию двух испытаний. Композиционное пространство имеет вид:

i=1, ..., s1 j=1, ..., s2

С точки зрения качественного анализа максимальная энтропия композиционного вероятностного пространства достигается тогда, когда испытания независимы. Найдем энтропию композиционного пространства для случая независимых испытаний.

Яндекс.Метрика