23. Задание подпространств конечномерного линейного пространства с помощью систем линейных уравнений

Пусть дано N-Мерное линейное пространство L и пусть в нём зафиксирован базис Е = (Е1, Е2, … , Еn ). Пусть М – линейное подпространство в L .

Определение 30. Будем говорить, что Система линейных уравнений задаёт подпространство М, если этой системе удовлетворяют координаты всех векторов из М и не удовлетворяют координаты никаких других векторов.

Из свойств решений однородной системы линейных уравнений следует, что любая однородная линейная система уравнений ранга R с n Переменными задаёт в любом N-Мерном пространстве Ln (если в нём зафиксирован базис) (N–r )-мерное линейное подпространство.

Справедливо и обратное утверждение. А именно, имеет место следующая теорема.

Теорема 30. Если в линейном N-Мерном пространстве Ln Зафиксирован базис, то любое его К-мерное линейное подпространство можно задать системой линейных однородных уравнений с N Неизвестными ранга (N – к).

Доказательство. Пусть в Ln зафиксирован базис Е = (Е1, Е2, … , Еn ). Пусть – линейное К-мерное подпространство в Ln. Выберем в Любой базис А = (А1, а2,… , ак). Пусть В матричной форме А = Е × А, где А = .

Так как А – базис, то ранг матрицы А Равен К.

Если D – любой вектор, то D Î Û D = С1А1 + С2А2 + … +СкАк , Где С1, с2, … , ск независимо друг от друга пробегают все элементы поля Р. Их называют параметрами. В матричном виде D = А × С, где С Столбец параметров. Отсюда D = Е×(А×с). Если Х – столбец координат вектора D В базисе Е, то D = Е×х. Отсюда, Е×х = Е×(А×с) и Х = А×с. Распишем в координатном виде.

Получили параметрические уравнения, определяющие .

После исключения параметров получится система (N – к) линейных однородных уравнений. Векторы А1, а2, … , ак являются её линейно независимыми решениями. Все остальные решения являются их линейными комбинациями.

Следовательно, система векторов (А1, а2, … , ак) будет фундаментальной системой решений полученной системы уравнений и поэтому ранг этой системы уравнений равен (N – к).

Пример. В пространстве L5 зафиксирован базис Е = (Е1, Е2, е3, е4 , Е5 ). Найти систему линейных однородных уравнений, задающих L3 = <А1, а2, а3>, если А1 = (1, –2, 2, 0, 1), А2 = (0, 4, 7, 0, 1), А3 = (–2, 3, –1, 0, 0).

Решение. Найдём ранг системы векторов (А1, а2, а3 ). Для этого достаточно найти ранг матрицы . Минор . Окаймляющий минор ¹ 0, следовательно, ранг матрицы равен 3, т. е. векторы А1, а2, а3 линейно независимы и подпространство L3 – трёхмерное. Согласно доказанной теоремы, оно может быть задано системой линейных однородных уравнений ранга 2.

D Î L3 Û D = с1А1 + С2А2 + С3А3 . Отсюда D Î L3 Û Х1 = с1 – 2с3 , х2 = –2с1 + 4с2 + 3с3 , х3 = 2с1 + 7с2 – с3 , х4 = 0, х5 = с1 + с2. Если из первого, второго и пятого уравнений выразить С1, с2 и С3 И подставить их в третье и четвёртое уравнения, то получим следующую систему

Замечание. Очевидно, система, задающая данное подпространство, определяется не единственным образом. К найденным уравнениям можно добавлять новые уравнения, являющиеся их линейными комбинациями.

© 2011-2024 Контрольные работы по математике и другим предметам!