Вариант 11

Вариант 11

1) Разложить в ряд Фурье функцию , заданную с помощью графика.

Функцию на графике можно представить в виде:

Разложим функцию В ряд Фурье с периодом:

;

;

;

Сумма ряда : 1) в точках непрерывности:

2) в точках разрыва:

2) Разложить в ряд Фурье по синусам функцию .

Продолжаем функцию нечетным образом с периодом :

;

;

;

Сумма ряда : 1) в точках непрерывности:

2) в точках разрыва:

3) Решить задачу Штурма – Лиувилля . Найти собственные функции, проверить их ортогональность.

Разложить функцию в ряд по собственным функциям.

Решение задачи Штурма – Лиувилля ищем в виде:

Характеристическое уравнение

1) - кратный корень.

Общее решение имеет вид: ,

Граничные условия: - тривиальное решение

2)

Общее решение имеет вид:

Граничные условия:

Т. к. - тривиальное решение.

3)

Общее решение имеет вид:

Граничные условия:

Система собственных функций при .

Проверка на ортогональность системы собственных функций

Система собственных функций ортогональна.

Разложим в ряд по собственным функциям .

Согласно теореме Стеклова функцию можно разложить в ряд Фурье: ,

Где

Значит:

4) Решить задачу о свободном колебании струны длины м с заданными краевыми условиями ; . Вычислить приближённое отклонение середины струны при сек, используя для этого первые три ненулевых слагаемых в разложении в ряд функции . Положить .

Решение

Будем искать решение уравнения свободных колебаний струны , удовлетворяющее однородным граничным условиям: и начальным условиям и представимое в виде произведения.

Подставляем его в исходное уравнение

Отсюда

Следовательно: Граничные условия

При имеем задачу Штурма – Лиувилля для X(x):.

Решение ищем в виде:

Характеристическое уравнение

1) - кратный корень.

Общее решение имеет вид:

Граничные условия: - тривиальное решение

2) , где - действительное число

Общее решение имеет вид:

Граничные условия:

Т. к. - тривиальное решение.

3) , - действительное число

Общее решение имеет вид:

Граничные условия:

Если

При этом пусть С2=1, тогда , при .

Этим же значениям соответствуют решения уравнения , имеющие вид:

Частное решение уравнения свободных колебаний струны:

Общее решение имеет вид:

Начальные условия Значит

Разлагаем в ряд Фурье по синусам на промежутке :

Сравнивая ряды, видим:

Общее решение представится в виде:

Приближённое отклонение середины струны в момент времени to =1:

;

© 2011-2024 Контрольные работы по математике и другим предметам!