Матрица линейного оператора. преобразование подобия. собственные значения и собственные векторы линейного оператора. диагонализация матриц

Задание 1. Линейный оператор преобразует векторы , , в векторы , , . Найти матрицу линейного оператора.

Решение. Матрицы

, и

Связаны между собой соотношением , откуда .

Так как , то , а искомая матрица линейного оператора .

Ответ: .

Задание 2. Пусть линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если матрица является матрицей перехода от базиса к базису .

Решение. Матрицы и линейного оператора , заданного в разных базисах, связаны между собой соотношением . Так как , то

.

Ответ: .

Задание 3. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .

Решение. Связь между матрицами и линейного оператора в разных базисах определяется формулой , где – матрица перехода от базиса к базису .

Составим матрицу : , тогда и, следовательно,

.

Ответ: .

Задание 4. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .

Решение. Матрицы и связаны между собой соотношением , где – матрица перехода от базиса к базису .

Составим матрицу : , тогда и, следовательно,

Ответ: .

Задание 5. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей .

Решение. Для нахождения собственных значений линейного оператора составим характеристическое уравнение , т. е. . Раскрывая определитель, получим , т. е. , .

По определению называется собственным вектором линейного оператора , соответствующим собственному значению , если .

Найдём собственные векторы и , соответствующие собственным значениям и .

При получим: , что равносильно такой однородной системе уравнений:

Если – базисная переменная, а – свободная, то .

При : , что равносильно однородной системе уравнений

Пусть – базисная переменная, – свободная. Примем , тогда , а следовательно, .

Так как собственные векторы соответствуют различным собственным значениям, то они должны быть линейно независимы. Проверим линейную независимость полученных собственных векторов и .

Составим матрицу . Так как , то собственные векторы и линейно независимы.

Ответ: собственные числа , ; собственные векторы , .

Задание 6. Привести матрицу линейного оператора к диагональному виду.

Решение. Матрица линейного оператора будет диагональной в базисе из собственных векторов, если такой базис существует. Найдём собственные значения и собственные векторы линейного оператора.

Запишем характеристическое уравнение: , т. е. или , откуда получаем , .

Найдём собственные векторы И .

При получим: , что соответствует следующей однородной системе уравнений:

Пусть – базисная переменная, – свободная. Полагая , получим .

При : . Соответствующая однородная система уравнений имеет вид:

Откуда . Пусть – базисная переменная, – свободная, примем тогда , а, следовательно, .

Собственные векторы и отвечают различным собственным значениям, поэтому они линейно независимы, т. е. могут составить базис. Матрица линейного оператора в базисе из собственных векторов и имеет диагональный вид: .

Можно проверить полученный результат. Так как , где матрица в случае перехода к базису из собственных векторов и имеет вид , следовательно,

,

Тогда

.

Ответ: .

Задание 7. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей . Построить, если это возможно, базис из собственных векторов и найти матрицу этого линейного оператора в базисе из собственных векторов.

Решение. Запишем характеристическое уравнение:

,

Т. е. ,

, откуда получаем , , .

Найдём собственные векторы линейного оператора.

При : , тогда соответствующая однородная система уравнений примет вид:

или

Что равносильно такой системе:

Пусть и – базисные переменные, – свободная. Полагая , получим .

При : , или, переходя к однородной системе уравнений, получим

Пусть и – базисные переменные, – свободная. Если , то .

При получим: , и однородная система уравнений примет вид:

Пусть и – базисные переменные, – свободная. Тогда если , то . Найденные собственные векторы соответствуют различным собственным значениям, поэтому они линейно независимы, значит, существует базис из собственных векторов. Матрица перехода к такому базису , тогда

.

Матрица линейного оператора в базисе из собственных векторов имеет вид: .

Можно сделать проверку полученных результатов:

.

Ответ: , , ; , , ; матрица линейного оператора в базисе из собственных векторов .

© 2011-2024 Контрольные работы по математике и другим предметам!