Глава 51. Производная сложной и обратной функций

Пусть функция удовлетворяет условиям теоремы о непрерывности сложной функции и функция является для нее Обратной.

Теорема (о производной обратной функции)

Пусть функция является непрерывной и строго монотонной в некоторой окрестности точки и имеет в этой точке производную Тогда Обратная функция также имеет в соответствующей точке производную, причем

(5.3.1)

Теорема (о производной сложной функции).

Пусть функция имеет производную в точке , а функция имеет производную в соответствующей точке . Тогда сложная функция имеет Производную в точке и справедлива следующая формула:

(5.3.2)

В данной теореме рассмотрена суперпозиция двух функций, где зависит от через промежуточную переменную . Возможна и более сложная зависимость с несколькими промежуточными переменными, однако правило дифференцирования сложной функции остается тем же. Например, если то производная вычисляется по формуле

(5.3.3)

Пример:

Найти производную функции

Решение

Эту функцию можно представить через промежуточную переменную как Тогда по формуле (5.3.2)

Производная неявной функции

Пусть дифференцируемая функция удовлетворяет уравнению , т. е. задана неявно. Чтобы найти производную функции , заданную неявно, необходимо продифференцировать обе части уравнения по переменной , рассматривая как сложную функцию от , а затем из полученного уравнения найти производную

Пример

Найти производную функции , заданную уравнением , и вычислить ее значение в точке (2;0).

Решение

Дифференцируя обе части равенства и учитывая, что есть функция от , получим , откуда

Значение производной при равно

Производная показательно–степенной функции (логарифмическая производная)

Пусть функция положительна и дифференцируема в точке . Вычислим производную функции . По правилу дифференцирования сложной функции получаем

.

(5.3.4)

Это выражение называется логарифмической производной функции . Найдем с помощью логарифмической производной производную показательно–степенной функции

(5.3.5)

Где и – некоторые функции от аргумента , имеющие в точке соответствующие производные. Поскольку то использование формулы (5.3.5) приводит к равенству

С учетом вида функции получаем следующую формулу для производной показательно–степенной функции:

(5.3.6)

© 2011-2024 Контрольные работы по математике и другим предметам!