3.2.1. Метод простых итераций (метод последовательных приближений)

Метод реализует стратегию постепенного уточнения значения корня.

Постановка задачи. Дано нелинейное уравнение (3.1). Корень отделен x* Î [a;b]. Требуется уточнить корень с точностью ε.

Уравнение ( 3.1) преобразуем к эквивалентному виду x=φ(x), (3.7)

Что можно сделать всегда и притом множеством способов.

Выберем начальное приближение x0Î [a;b].

Вычислим новые приближения:

X1=φ(x0)

X2=φ(x1)

………..

Xi=φ(xi-1) , i=1,2,… где i − номер итерации. (3.8)

Последовательное вычисление значений xi по формуле (3.8) называется итерационным процессом метода простых итераций, а сама формула - формулой итерационного процесса метода.

Если , то итерационный процесс Сходящийся .

Условие сходимости (3.9)

Точное решение x* получить невозможно, так как требуется Бесконечный Итерационный процесс.

Можно получить Приближенное Решение, прервав итерационный (3.8) при достижении условия

, (3.10)

Где ε - заданная точность; i - номер последней итерации.

В большинстве случаев условие завершения итерационного процесса (3.10) обеспечивает близость значения xi к точному решению:

Рассмотрим геометрическую иллюстрацию метода простых итераций.

Уравнение (3.7) представим на графике в виде двух функций: y1 = x и y2= φ(x).

Возможные случаи взаимного расположения графиков функций, и соответственно, видов итерационного процесса показаны на рис. 3.7 – 3.10.

Рис. 3.7 Итерационный процесс для случая 0<<1 xÎ[a, b].

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 3.8 Итерационный процесс для случая -1<<1 xÎ[a, b].

 

 

 

 

 

 

 

 

 

 

 

Рис. 3.9 Итерационный процесс для случая >1 xÎ[a, b].

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 3.10 Итерационный процесс для случая £ - 1 xÎ[a, b].

Из анализа графиков следует, что скорость сходимости растет при уменьшении значения

Метод достаточно прост, обобщается на системы уравнений, устойчив к погрешности округления (она не накапливается).

При разработке алгоритма решения нелинейного уравнения методом простых итераций следует предусмотреть защиту итерационного процесса от зацикливания: использовать в качестве дополнительного условия завершения итерационного процесса превышение заданного максимального числа итераций.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис 3.11. Алгоритм решения нелинейного уравнения методом
простых итераций:

Основной проблемой применения метода является обеспечение сходимости итерационного процесса: нужно найти такое эквивалентное преобразование (3.1) в (3.7), чтобы обеспечивалось условие сходимости (3.9) .

Простейшие эквивалентные преобразования, например:

F(x) = 0 => x+f(x) = x, т. е. φ(x) = x + f(x)

Или выразить явно x из (3.1)

F(x) = 0 => x - φ(x) = 0 => x = φ(x)

Не гарантируют сходимость.

Рекомендуется следующий способ получения формулы Сходящегося итерационного процесса.

Пусть .

Если это не так, переписать уравнение (3.1) в виде

Умножить обе части уравнения на и к обеим частям прибавить x:

Константу l вычислить по формуле:

(3.11)

Такое значение λ гарантирует сходящийся итерационный процесс по формуле

Xi = xi+1− λ f(x) (3.12)

Где i=1,2,… - номер итерации, x0Î[a, b] – начальное приближение.

Пример 3.2.

Методом простых итераций уточнить корень уравнения x3=1-2 x с точностью ε=0,001. Корень отделен ранее (см. пример 3.1), x* Î [0;1].

Сначала нужно получить формулу сходящегося итерационного процесса.

Из уравнения выразим явно x:

Проверим условия сходимости для полученной формулы:

, ,

для x Î (0;1].

Условие сходимости не соблюдается, полученная формула не позволит уточнить корень.

Воспользуемся описанным выше способом получения формулы итерационного процесса (формулы 3.11, 3.12).

, , для всех x Î [0;1].

Наибольшее значение принимает при x = 1, т. е.

Следовательно .

Формула Сходящегося итерационного процесса

Уточним корень с помощью данной формулы.

Выберем начальное приближение на [0;1], например x0=0,5 (середина отрезка).

Вычислим первое приближение

Проверим условие завершения итерационного процесса

Расчет следует продолжить.

X3 = 0,458216

X4 = 0,455688

X5 = 0,454488

X6 = 0,453917 − ответ, т. к.

Проверим полученное значение, подставив в исходное уравнение:

Значение f(x) близко к 0 с точностью, близкой к ε, следовательно, корень уточнен правильно.

Яндекс.Метрика