14. Формула полной вероятности_

Рассмотрим систему A из k попарно несовместных событий.

B1, B2, ..., Bk

Пусть дано событие A, удовлетворяющее равенству A=B1A+B2A+...+BkA.

Показать, что события B1A, B2A, BkA попарно несовместны. BiABjA=BiBjAA=VAA=V

Найти вероятность наступления события A. Любое событие входящее в A, обязательно входит в некоторое, но одно Bi, т. к. B1, B2, ..., Bk образуют полную группу.

Т. к. B1, B2, ..., Bk несовместны, то по третей аксиоме теории вероятности имеем:

; т. е.

Например: Имеются урны трех составов

1

5 урн

6 белых и 3 черных шара

2

3 урны

10 белых и 1 черный

3

7 урн

0 белых и 10 черных

Все шары в каждой урне перемешаны.

Испытание - извлекается шар. Какая вероятность того, что при этом будет извлечен белый шар.

B1 - Вытащить любой шар из урны 1.

B2 - Вытащить любой шар из урны 2.

B3 - Вытащить любой шар из урны 3.

A - Извлечь белый шар.

A=B1A+B2A+B3A

B1, B2, B3 - попарно несовместны.

Формула полной вероятности: P(A)=P(B1)P(A/B1)+P(B2)P(A/B2)+P(B3)P(A/B3)

P(B1)=1/3

P(A/B1)=6/9=2/3

P(B2)=1/5

P(A/B2)=10/11

P(B3)=7/15

P(A/B3)=0

P(A)=1/3×2/3+1/5×11/10+7/15×0=2/9+2/11=40/99»0.4

Яндекс.Метрика