logo

Решение контрольных по математике!!!

28. Условные вероятности

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А Заключается в том, что студент вытащил выученный билет: А = (1,...,5,25,...,30,), а событие В — в том, что студент вытащил билет из первых двадцати: В = (1,2,3,...,20)

Событие АВ состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 - это вероятность события B. Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р(А/В)). Таким образом решение задачи определяется формулой

P(АВ) = Р(А/В) Р(B)

Эта формула называется формулой умножения вероятностей, а вероятность Р(А/В) — условной вероятностью события A.

Пример..Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X — событие, состоящее в извлечении первым белого шара, а Y — Событие, состоящее в извлечении вторым черного шара. Тогда XY - событие, заключающееся в том, что первый шар будет белым, а второй — черным. P(Y/X) =3/9 =1/3 — условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P(X) = 7/10, по формуле умножения вероятностей получаем: P(XY) = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), Если Р(А/В)=Р(А). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P(АВ) = Р(А) Р(B)

Докажите самостоятельно, что если А и В — независимые события, то и тоже являются независимыми события.

Пример. Рассмотрим задачу, аналогичную предыдущей, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар - черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А) равна 7/10. Вероятность события В - появления вторым черного шара - равна 3/10. Теперь формула умножения вероятностей дает: P(АВ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется Выборкой с возвращением Или возвратной выборкой.

Следует отметить, что если в двух последних примерах положить изначальные количества белых и черных шаров равными соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

 
Яндекс.Метрика
Наверх