0. Дискретная математика

Дискретная математика

Дискретная математика – часть математики, которая зародилась в глубокой древности. В широком смысле этого слова к дискретной математике относятся как классические разделы математики: алгебра, теория чисел, теория множеств, математическая логика и т. д., так и новые разделы, которые возникли в середине нашего столетия в связи с внедрением ЭВМ в практическую жизнь. В узком смысле, а в настоящее время именно в узком смысле слова «дискретная математика» и употребляются, сюда относят только те разделы, которые связаны с анализом сложных управляющих систем.

Курс дискретной математики, входящий в программу для ряда специальностей УГАТУ, включает в себя функции алгебры двузначной и К-значной логики, автоматные функции, теорию графов, теорию кодирования, синтез схем из функциональных элементов, элементы комбинаторики и алгебру высказываний.

В этом пособии будут рассмотрены элементы комбинаторики, функции двузначной и К-значной логики и логика высказываний.

При этом будет использован формализм, который оказался особо подходящим для строгого описания многих разделов компьютерной математики – булева алгебра. Булева алгебра содержит в себе основные положения элементарной логики. Примерами булевой алгебры являются алгебра множеств и алгебра высказываний. Название связано с именем английского математика Джорджа Буля (1815 – 1864). Полное формальное представление булевой алгебры было дано лишь в 1904 году Хантингтоном. Он ввел систему аксиом, из которых могут быть выведены все утверждения булевой алгебры. Предпошлем основному изложению определение булевой алгебры.

Алгеброй Буля называется произвольное множество элементов {a, b, ...}, для которых определены две бинарные операции, условно называемые «сложение» и «умножение», которые каждым двум элементам a и b ставят в соответствие третий, и одна унарная операция, условно называемая «черта», которая каждому элементу ставит в соответствие другой. В этом множестве имеются два особых элемента, назовем их 0 и e, и выполняются cледующие правила:

1) коммутативность сложения и умножения;

2) ассоциативность сложения и умножения;

3) дистрибутивность умножения относительно сложения и наоборот;

4) идемпотентность: a+a=a и a a=a ;

5) инволюция =a;

6) правила де Моргана: , ;

7) =e и =0;

8) a+0=a, a+e=e, a 0=0 , a e=a.

Определение булевой алгебры, кажущееся с первого взгляда громоздким и весьма специальным, на самом деле явилось результатом глубокого проникновения в существо многих внешне не схожих явлений и прoцессов, абстрактное описание которых позволило обнаружить далеко идущие аналогии.

Например, алгебру Буля образует множество подмножеств любого множества (универсума), где в качестве бинарных операцией взяты пересечение(Ç) и объединение ( È) множеств, в роли особого элемента 0 служит пустое множество Æ, а в роли e - сам универсум, в роли операции отрицания – дополнение.

Пособие состоит из четырех разделов. В первом разделе излагаются элементы комбинаторики, причем в таком объеме, который позволяет обеспечить приемлемую строгость изложения в последующих разделах, например, при оценке мощностей замкнутых классов.

Во втором разделе рассматриваются основные положения алгебры логики. Здесь особую роль играет множество {0,1}, элементы которого не являются числами в обычном смысле, хотя по некоторым свойствам и похожи на них. Наиболее распространенная интерпретация двоичных переменных – логическая: «да» – «нет», «истинно» (и) – «ложно» (л). В контексте, содержащем одновременно двоичные и арифметические величины и функции, эта интерпретация обычно фиксируется явно, например, в языках программирования. В данном пособии логическая интерпретация двоичных переменных необходима только в разделе, посвящённом логике высказываний.

Третий раздел содержит методы минимизации булевых функций. Знание этих методов полезно при изучении, например, таких разделов дискретной математики, как «схемы из функциональных элементов» – для понижения сложности схем, и «автоматные функции» – для доопределения частично определённых функций.

В четвёртом разделе приведены элементы логики высказываний – булевой алгебры на множестве {истина, ложь}.

Каждый раздел пособия содержит теоретический материал, сопровождаемый большим числом примеров, и завершается задачами для самостоятельного решения. Причём количество задач таково, что пособие может быть использовано преподавателями на практических занятиях.

Работа выполнена на кафедре математики УГАТУ. Учебное пособие написано по материалам лекций и практических занятий по курсу дискретной математики, которые проводили авторы.

© 2011-2024 Контрольные работы по математике и другим предметам!