18. Замена переменных в двойном интеграле

Пусть функции осуществляют взаимно однозначное непрерывно дифференцируемое отображение области P плоскости на область S плоскости . Тогда существует обратное непрерывно дифференцируемое отображение , области S на область P, если якобиан преобразования

=.

Величины U и V можно рассматривать как прямоугольные координаты для точек области P и в то же время как Криволинейные координаты точек области S. Точки плоскости Oxy, для которых одна из координат U и V сохраняет постоянное значение, образуют Координатную линию. Всего будет два семейства таких линий.

Теорема 14.3. Пусть есть дифференцируемое преобразование области P из плоскости на область S Из плоскости . Тогда справедливо равенство

(2.5)

Замечание. Равенство (2.5) сохраняет справедливость, когда условие взаимно однозначного соответствия между областями S и P нарушается в отдельных точках или вдоль отдельных линий.

Переход в двойном интеграле к полярным координатам

Формулы

(2.6)

Преобразуют полярные координаты точки в декартовы координаты этой точки и переводят область (или область ) на всю плоскость Oxy.

Обратное преобразование декартовых координат в полярные осуществляется по формулам:

Фиксируя в последних формулах И, получим координатные линии из разных семейств: окружность с центром в точке И луч, исходящий из точки .

Якобиан преобразования

И формула (2.5) принимает вид:

(2.7)

Рекомендация. К полярным координатам целесообразно переходить, когда в подынтегральное выражение или в уравнения границы области интегрирования входит комбинация .

В некоторых случаях при вычислении двойного интеграла удобно перейти от декартовых координат к Эллиптическим полярным Координатам по формулам

, (2.8)

- постоянные, . Тогда

, (2.9)

Пример 6. Записать в полярной системе координат область S , заданную в декартовой системе координат неравенством (круг радиуса R с центром в точке ).

Ñ Перейдем от декартовых координат X, Y к полярным по формулам , . Подставим X и Y в исходное неравенство, получим: или . На координату j дополнительных ограничений не накладывается, поэтому (или ).

В полярной системе координат круг записывается неравенствами: . #

Пример 7. Записать в полярной системе координат область S - часть круга, ограниченную линиями , , (), - постоянные, .

Ñ Изобразим область S (рис. 14.9). Запишем заданные линии в полярных координатах, которые связаны с декартовыми формулами , : 1)Þ ;

2) Þ, ;

3)Þ.

Область переходит в область

.

В полярной системе координат заданная область определяется системой неравенств: . #

Рис.14.9

 

Пример 8. Вычислить двойной интеграл , S - множество точек, удовлетворяющих неравенству .

Ñ Границей области является линия или - окружность радиуса 2 с центром в точке (Рис. 14.10).

Рис. 14.10

Наличие в уравнении границы комбинации наводит на мысль, что для вычисления двойного интеграла удобно перейти к полярным координатам по формулам , , . Уравнение границы переходит в уравнение или . Отсюда r=0 (соответствует полюсу O) и - уравнение окружности. Так как всегда (по смыслу r), то из следует , отсюда получаем (этот же результат можно усмотреть из рисунка). Итак, в полярных координатах область интегрирования есть . Тогда по формуле (2.7)

. #

Пример 9. Вычислить , где .

Ñ Область D ограничена линиями: – эллипс с полуосями A и B, – эллипс с полуосями и , Y=0 – прямая (ось Ox), – прямая (рис. 14.11).

Рис.14.11

Анализ границы области указывает на целесообразность перехода к Эллиптическим полярным координатам по формулам (2.8), (2.9): , . Уравнения границы области в координатах будут: 1), 2) , 3) ,
4) . Итак, область интегрирования в координатах есть

. Тогда

. #

Задачи для самостоятельного решения

Перейти в двойном интеграле к полярным координатам и расставить пределы интегрирования в порядке: внешнее – по j, внутреннее - по r:

27. D – область, ограниченная окружностями , и прямыми , .

28. D - область, являющаяся общей частью двух кругов и .

29. D - меньший из двух сегментов, на которые прямая рассекает круг .

30. D - внутренняя часть правой петли лемнискаты Бернулли .

31. D:.

32. D: .Указание. Перейти к эллиптическим полярным координатам.

33. D - область, ограниченная линией . Указание. Перейти к эллиптическим полярным координатам.

34. . 35. . 36. .

С помощью перехода к полярным координатам вычислить интегралы:

37. . 38. .

39. . 40. , D - часть кольца ,

, . 41. .

Вычислить, перейдя к эллиптическим полярным координатам, интегралы:

42. .

43. - область, ограниченная линией .

© 2011-2024 Контрольные работы по математике и другим предметам!