logo

Решение контрольных по математике!!!

Home Методички по математике Линейное программирование 11. Условия перехода от одной р-матрицы ЗЛП к другой

11. Условия перехода от одной р-матрицы ЗЛП к другой

Определение. Р-матрицей КЗЛП (3.18) будем называть расширенную матрицу системы линейных уравнений, равносильной системе (3.63), содержащую единичную подматрицу порядка m на месте n первых столбцов, все симплекс разности которой неотрицательны.

Очевидно, что всякая Р-матрица ЗЛП определяет некоторое базисное решение системы уравнений (3.63) (см. пример 3.5).

Определение. Базисное решение системы линейных уравнений (3.63), определяемое Р-матрицей, называется псевдопланом ЗЛП.

Пусть известна Р-матрица ЗЛП (3.18), определяющая псевдоплан

=, .

Условия перехода от матрицы к матрице Составляют содержание теоремы 3.12.

Теорема 3.12. Пусть < 0 и в L-й строке матрицы Есть хотя бы один отрицательный элемент. Тогда с помощью одного шага метода Жордана–Гаусса можно построить новую Р-матрицу , выбрав направляющий элемент из условия

. (3.65)

Замечание 1. Если в матрице Нет < 0, то определяемый ею псевдоплан является решением ЗЛП.

Теорема 3.13. Пусть < 0 и в L-й строке матрицы нет ни одного отрицательного элемента. Тогда множество планов Р ЗЛП (3.18) пусто.

Замечание 2. При переходе от матрицы к матрице Целевая функция изменяется в соответствии с формулой

F() = F () + = F () + , (3.66)

Откуда следует, что

F () F (), (3.67)

Так как < 0 и . Из неравенства (3.67) следует, что при переходе от одного псевдоплана к другому значение целевой функции не возрастает.

 
Яндекс.Метрика
Наверх