01. Лекция 1. Неопределенный интеграл, таблица интегралов

Функция называется Первообразной для функции , если .

Теоремы о первообразных.

Теорема. Если - первообразная для функции , то (- константа) - тоже первообразная для функции .

Доказательство. .

Теорема. Пусть - две первообразных для функции , тогда они различаются на некоторую константу (- константа).

Рассмотрим функцию , она непрерывна и дифференцируема на всей числовой оси, как и функции . Тогда для любых конечных значений по формуле конечных приращений Лагранжа .

Следовательно,

Неопределенным интегралом (интеграл от функции по ) называется совокупность всех первообразных функций для функции .

.

Функция , стоящая под знаком интеграла, называется подынтегральной функцией, а выражение - подынтегральным выражением..

Свойства неопределенного интеграла.

Свойства неопределенного интеграла можно условно разделить на две группы. В первую группу собраны свойства, вытекающие из того, что Интегрирование – операция, обратная дифференцированию. Во вторую группу собраны Свойства линейности. Эти свойства вытекают из того, что интегрирование, как и дифференцирование – линейная операция и определяют линейную операцию.

Первая группа свойств.

1) .

2)

3)

4) .

Докажем первое свойство.

Так как

Здесь - первообразная для .

Докажем второе свойство.

Обозначим Тогда , а по первому свойству. Поэтому функции являются первообразными для функции . Следовательно, по теоремам о первообразных, они различаются на константу, т. е. Или

Третье свойство следует из первого:

Четвертое свойство следует из второго, если вспомнить, что с дифференциалом первого порядка можно обращаться как с алгебраическим выражением (свойство инвариантности формы записи первого дифференциала).

Поэтому надо доказать два первых свойства.

Вторая группа свойств.

1) свойство суперпозиции

2) свойство однородности .

Доказательства того и другого свойств проводятся аналогично. Дифференцируем (по свойствам первой группы) левую и правую часть равенства, приходим к тождеству. Затем из теорем о первообразных заключаем, что левая и правая часть равенства, как первообразные одной и той же функции, различаются на константу. Эта константа может быть формально включена в неопределенный интеграл в левой или правой части равенства.

Для того, чтобы вычислить интеграл от функции, проще всего «угадать» первообразную для этой функции по таблице для производных, переписав эту таблицу в обратном порядке. Запишем Интегралы для основных элементарных функций.

1) . Эти формулы лучше запомнить, они очень часто встречаются.

2)

3)

4)

Справедливость этих формул легко проверить, дифференцируя правую часть соотношения и получая подынтегральную функцию.

© 2011-2024 Контрольные работы по математике и другим предметам!