1.3 Прямая линия. 1.3.1 Уравнение прямой с угловым коэффициентом

Изучение геометрических свойств линий начнем с простейшей из линий – прямой. Всякая прямая в декартовой системе координат может быть представлена уравнением первой степени и, обратно, всякое уравнение первой степени относительно Х и У определяет прямую линию.

Рассмотрим прямую, не параллельную осям координат. Положение ее на плоскости вполне определяется заданием Угла наклона прямой к оси ОХ и ординатой точки В пересечения прямой с осью ОY. Под углом наклона прямой к оси ОХ будем понимать тот угол, на который надо повернуть ось ОХ против часовой стрелки, чтобы она совпала с данной прямой (или оказалась параллельной ей). Обозначим этот угол через . Величину отрезка OB обозначим через b. Пусть
М (Х, У) – произвольная точка, лежащая на прямой (рисунок 1.3).

Рисунок 1.3

При движении точки по прямой ее координаты остаются все время связанными между собой некоторым условием. Выпишем это условие. Проведем прямые BK и МК, параллельные осям координат. Мы получили прямоугольный треугольник МВК, для которого верно соотношение

(1.5)

Тангенс угла наклона прямой к оси ОХ называется угловым коэффициентом прямой. Обозначим его буквой K, т. е. tg = K. Из рисунка 1.3 видно, что MK = Y – b, BK = X. Равенство (1.5) теперь можно записать в виде

,

Откуда, выразив y, окончательно получаем

y = Kx + B. (1.6)

Этому уравнению удовлетворяют лишь координаты точек, лежащих на рассматриваемой пря-мой, и оно нарушается, если точка не лежит на прямой. Таким образом, полученное уравнение (1.6) является уравнением заданной прямой линии.

Уравнение прямой вида (1.6) называется Уравнением прямой с угловым коэффициентом.

Уравнение (1.6) мы получили, считая, что прямая не параллельна осям координат.

Посмотрим, какое уравнение будет иметь прямая, параллельная какой-либо координатной оси (рисунок 1.4).

Рисунок 1.4

1. Пусть Прямая параллельна оси ОY. Обозначим через А абсциссу точки пересечения этой прямой с осью ОХ. Очевидно, любая точка прямой имеет абсциссу, равную А, если же точка не лежит на прямой, то ее абсцисса будет отлична от А. Следовательно, Уравнение этой прямой имеет вид

x = A. (1.7)

2. Пусть теперь Прямая параллельна оси ОХ. Ее угловой коэффициент K = 0. Считая этот случай частным, из Уравнения (1.6) получаем

Y = B. (1.8)

Итак, если прямая не параллельна осям координат, то ее уравнение может быть записано в форме (1.6). Если же прямая параллельна оси ОY, то ее уравнение можно записать в форме (1.7), уравнение прямой, параллельной оси ОХ, имеет вид (1.8). Все эти уравнения являются уравнениями первой степени относительно переменных Х и У. Таким образом, мы показали, что в декартовой системе координат всякая прямая может быть представлена уравнением первой степени.

Пример 1.3. Составить уравнение прямой, отсекающей на оси ОY отрезок B = 3 и составляющей с осью OX угол: 1) = 45°; 2) = 135°.

Решение. 1. K = tg = tg 45° = 1. Уравнение прямой имеет вид Y = 1 × X + 3, или Y = X + 3.

2. К = tg = tg 135° = –1. Уравнение имеет вид Y = –X + 3.

Яндекс.Метрика