6.6. Решение задач

Пример 1. 30% изделий, выпускаемых данным предприятием, нуждается в дополнительной регулировке. Наудачу отобрано 200 изделий. Найти среднее значение и дисперсию случайной величины X – числа изделий в выборке, нуждающихся в регулировке.

Решение. Случайная величина X имеет биномиальное распределение. Здесь n=200, p=0,3, q=0,7. Используя формулы (10), находим: , .

Пример 2. Автоматическая телефонная станция получает в среднем за час 300 вызовов. Какова вероятность того, что за данную минуту она получит точно два вызова?

Решение. За одну минуту АТС в среднем получает вызовов. Считая, что случайное число X вызовов, поступивших на АТС за одну минуту, подчиняется закону Пуассона, по формуле (11) найдем искомую вероятность .

Пример 3. Вероятность попадания в цель при одном выстреле равна 0,01. Какова вероятность того, что число попаданий при 200 выстрелах составит не менее 5 и не более 10?

Решение. Пусть случайная величина X – число попаданий в цель. Так как вероятность p=0,01 очень мала, а число выстрелов (опытов) достаточно велико, то искомую вероятность будем находить, используя формулу Пуассона (см. (11)). По теореме сложения вероятностей . Учитывая, что , , получим .

Пример 4. Поезда метрополитена идут регулярно с интервалом 2 мин. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать пассажиру придется не больше полминуты? Найти математическое ожидание и среднее квадратическое отклонение случайной величины X – времени ожидания поезда.

Решение. Случайная величина X – время ожидания поезда – на временном отрезке [0, 2] имеет равномерный закон распределения (см. (12)). Тогда вероятность того, что пассажиру придется ждать не более полминуты

.

По формулам (13) найдем мин., .

мин.

Пример 5. Случайная величина T – время работы радиолампы – имеет показательное распределение. Определить вероятность того, что время работы лампы будет не меньше 600 часов, если среднее время работы радиолампы 400 часов.

Решение. По условию задачи математическое ожидание случайной величины T равно 400 часам, следовательно, . (см. (15)).

Тогда с учетом формулы (14) искомая вероятность .

Пример 6. Случайные ошибки измерения детали подчинены нормальному закону с параметром Мм. Найти вероятность того, что измерение детали произведено с ошибкой, не превосходящей по модулю 25 мм.

Решение. Воспользуемся формулой (17). В нашем случае , , следовательно,

.

Пример 7. Пусть X – случайная величина, подчиненная нормальному закону с математическим ожиданием и средним квадратическим отклонением . Какова вероятность того, что при четырех испытаниях эта случайная величина попадет хотя бы один раз в интервал (1,2)?

Решение. Найдем вероятность попадания случайной величины X в интервал (1,2) при одном испытании. Согласно формуле (16) имеем:

.

Тогда вероятность того, что случайная величина не попадет в интервал (1,2) при одном испытании равна 1-0,3811=0,6189, а при четырех испытаниях . Значит, искомая вероятность .

Яндекс.Метрика