Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

Вариант № 18

PDF Печать E-mail

1. Исследовать числовой ряд на сходимость: .

Заметим, что , так как . Но ряд с общим членом расходится, являясь частью гармонического ряда: Следовательно, расходится и исследуемый ряд по первому признаку сравнения. Ответ: Ряд расходится.

2. Исследовать числовой ряд на сходимость: .

Применим признак д, Аламбера:

. Следовательно, данный ряд расходится.

Ответ: Ряд расходится.

3. Исследовать числовой ряд на сходимость: .

Имеем . Функция удовлетворяет условиям интегрального признака Коши. Действительно, монотонно убывает на и, следовательно, интеграл и исходный ряд сходятся или расходятся одновременно. Имеем . Интеграл сходится, следовательно, сходится и данный ряд. Ответ: Ряд сходится.

4. Исследовать ряд на абсолютную или условную сходимость: .

Исходный ряд является знакочередующимся рядом и удовлетворяет всем условиям теоремы Лейбница. Действительно, по абсолютной величине члены ряда монотонно убывают, а общий член ряда по абсолютной величине стремится к нулю. Рассмотрим ряд . Рассмотрим общий член ряда: . Получили сумму общих членов двух сходящихся рядов. По свойствам сходящихся рядов сумма двух сходящихся рядов (степени в знаменателях больше единицы) образует сходящийся ряд. Ряд сходится. В таком случае сходится и ряд и, следовательно, сходится исследуемый ряд по первому признаку сравнения. Ответ: Ряд сходится абсолютно.

5. Определить область сходимости функционального ряда: .

Применим признак д, Аламбера к ряду : . Ряд сходится при любом значении . Ответ: Областью сходимости ряда является множество .

6. Определить область сходимости функционального ряда: .

Применим признак д, Аламбера к ряду : . Ряд сходится, если этот предел будет меньше единицы: , т. е. или . Следовательно, ряд сходится при и . Исследуем ряд на концах интервала. При и при Получим один и тот же числовой ряд . Ряд расходится, так как . Ответ: Областью сходимости ряда является множество

7. Определить область сходимости функционального ряда: .

Применим признак д, Аламбера к ряду:

. Ряд сходится, если этот предел будет меньше единицы: , т. е. . Следовательно, ряд сходится при . Исследуем ряд на концах интервала. При получим числовой ряд , а при получим числовой ряд . Первый ряд сходится по признаку Лейбница, второй ряд сходится по признаку сравнения в предельной форме со сходящимся рядом (степень в знаменателе больше единицы). Ответ: Областью сходимости ряда является множество .

8. Разложить указанную функцию в ряд Тейлора по степеням . Указать область сходимости: .

Известно, что . Функция представляет сумму бесконечно убывающей геометрической прогрессии: , при условии , - знаменатель прогрессии. Положим . Получим ряд: . Тогда . Этот ряд будет бесконечно убывающей прогрессией, если только , или . Очевидно, что на концах этого интервала ряд расходится. Следовательно, областью сходимости ряда будет область . Ответ: .

9. Указанную функцию разложить в ряд Маклорена, используя разложения в ряд функций указать область сходимости: .

Преобразуем данную функцию: . Воспользуемся разложением функции в ряд Маклорена: . Этот ряд сходится при . В этот ряд подставим , получим: . Тогда (здесь учтено, что ). Областью сходимости ряда будет . Ответ: , .

10. Вычислить приближённо с точностью до 10-4: .

Воспользуемся формулой . Получим . Тогда

. В соответствии с теоремой Лейбница заданная точность будет достигнута, если первое отбрасываемое слагаемое будет по абсолютной величине меньше, чем . В данном случае . Очевидно, что . Следовательно, достаточно взять три первых слагаемых: . Ответ: .

11. Вычислить предел, используя разложение функций в ряд Тейлора: .

Так как , то . Следовательно,

. Ответ: .

12. Найти сумму ряда:.

Пусть сумма ряда. Преобразуем ряд: . Так как , то и .

Следовательно, . Ответ: .

13. Найти сумму ряда:.

Обозначим сумму ряда через S(X). Тогда . Но есть суммы бесконечно убывающих геометрических прогрессий при . Следовательно,

. Ответ: .

14. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:

Будем искать решение уравнения в виде , где . Будем последовательно вычислять производные : , . Таким образом, .

Ответ: .

15. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:

Будем искать решение уравнения в виде , где . Будем последовательно вычислять производные : , . Таким образом, .

Ответ: .

21. Разложить заданную графиком периодическую функцию в ряд Фурье:

.

Функция является нечётной. Поэтому в её разложении в ряд Фурье все коэффициенты . Вычислим коэффициенты : . Таким образом, . Ответ: .

22. Разложить функцию в ряд Фурье на : , - не целое.

Вычисляем коэффициенты разложения данной функции в ряд Фурье. Так как функция нечётная, то все . Вычислим . . Таким образом, . Ответ: .

24. Найти разложение функции ряд Фурье в комплексной форме на : .

В комплексной форме ряд Фурье функции периода имеет вид: где . В данном случае . Таким образом, . Ответ: .

25. Функцию представить интегралом Фурье в действительной форме:

.

Представление функции интегралом Фурье в действительной форме имеет вид , где . Функция является нечётной, поэтому и , найдём : . Таким образом, .

Ответ: .

26. Функцию представить интегралом Фурье в комплексной форме:

.

Представление функции интегралом Фурье в комплексной форме имеет вид , где . Вычислим : . Таким образом, . Ответ:

 
Яндекс.Метрика
Наверх