Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

Вариант № 17

PDF Печать E-mail

1. Найти область определения функции :.

Область определения данной функции определяется следующими условиями: , , т. е. . Далее, знаменатель не должен обращаться в нуль: или . Объединяя результаты, получим: . Ответ: .

2. Построить график функции: .

Данная функция определена на всей числовой оси, кроме точек и . Преобразуем функцию: если и если . Или . График функции симметричен относительно прямой , прямая является горизонтальной асимптотой. Достаточно построить график (по точкам) для , затем отобразить полученную часть графика зеркально относительно прямой .

Ответ: График представлен на рисунке.

3. Построить график функции: .

Область определения функции – вся числовая ось: . Функция периодическая с периодом 4 (относительно переменной X). Строим сначала . Затем «растянем» график в 4/π раза по оси ОХ, затем «сжимаем» его по оси ОУ в четыре раза.

Получим график данной функции. Ответ: Последовательность построения представлена на рисунках.

4. Построить график функции: .

Исключим параметр T: . Или . Возведём обе части в квадрат . Преобразуя, получим уравнение эллипса с центром в начале координат, с малой полуосью 2 и с большой полуосью 5: .

Ответ: График представлен на рисунке.

5. Построить график функции: .

Поскольку , то функция существует для тех значений φ, для которых и или и . Рассмотрим первый вариант: если . Функция возрастает от 0 до A (при ), затем убывает от A до 0. Вертикальная ось пересекается графиком в точках (π/2, A) и (0, 0). График построен для A=2. Ответ: График представлен на рисунке.

6. Вычислить предел: .

Возведём все скобки в степени и приведём подобные:

.

Ответ: .

7. Вычислить предел: (неопределённость вида (0/0)).

Разлагаем числитель и знаменатель на простые множители:

. Ответ: .

8. Вычислить предел: (неопределённость вида (0/0)).

Умножим числитель и знаменатель на сопряжённое к знаменателю выражение: .

Ответ: .

9. Вычислить предел: (неопределённость вида (0/0)).

Воспользуемся формулой и первым замечательным пределом: : .

Ответ: .

10. Вычислить предел: (неопределённость вида (1∞)).

Приведём предел ко второму замечательному пределу: : . Ответ: .

11. Вычислить предел: (неопределённость вида (0/0)).

Сделаем замену переменной, затем воспользуемся эквивалентными величинами: . Тогда

|. Ответ: .

12. Исследовать функцию на непрерывность и построить эскиз графика: .

Область определения: . В области определения функция является непрерывной (как элементарная функция). Исследуем поведение функции в граничной точке области определения: . Таким образом, в точке X=−4 функция имеет разрыв второго рода. Для построения эскиза графика функции рассмотрим поведение функции в бесконечности: .

Ответ: В точке и X=−4 функция имеет разрыв второго рода, в остальных точках она непрерывна. Эскиз графика представлен на рисунке.

13. Исследовать функцию на непрерывность и построить эскиз графика: .

Область определения функции: . Ось ОХ разбивается на два интервала, на каждом из которых функция F(X) совпадает с одной из указанных непрерывных функций. Поэтому точкой разрыва может быть только точка, разделяющая интервалы. Вычислим односторонние пределы:

. Таким образом, в точке X=−1 функция терпит разрыв первого рода. Величина скачка функции в точке X=−1 равна -3.

Ответ: В точке X=−1 функция имеет разрыв первого рода, в остальных точках она непрерывна. Эскиз графика представлен на рисунке.

14. Исходя из определения производной, найти :

.

По определению . Заменим ΔX на X-X0:

. Но , поэтому . В данном случае , так как всегда.

Ответ: .

15. Найти производную показательно-степенной функции: . Прологарифмируем функцию: . Берём производную, как производную неявной функции: . Подставляем сюда Y:

. Ответ: .

16. Составить уравнения касательной и нормали к кривой в данной точке, вычислить :

.

Уравнения касательной и нормали к кривой имеют вид и , где и - координаты точки касания. Вычислим сначала эти координаты:

. Найдём производные и :

.Тогда . Далее, , следовательно, . Таким образом, уравнение касательной , уравнение нормали . Или и .

Ответ:

17. Функция Y(X), заданная неявно уравнением , принимает в точке Значение . Найти .

Дифференцируем уравнение по X, предполагая, что Y= Y(X): . Из этого равенства находим: . Находим вторую производную: . Вычислим производные в точке : . Ответ: , , .

18. Вычислить приближённое значение функции в заданной точке с помощью дифференциала: .

По определению дифференциала или, в других обозначениях, . Отсюда получаем формулу для приближённых вычислений: . В данном случае . Тогда . Ответ:

19. Вычислить предел с помощью правила Лопиталя: .

Это неопределённость вида (1∞). Преобразуем предел:

. Найдём предел в показателе степени: . Следовательно, .

Ответ: .

20. Вычислить предел с помощью правила Лопиталя: .

Это неопределённость вида (∞/∞):

. Ответ: .

21. Многочлен по степеням X представить в виде многочлена по степеням : .

Запишем формулу Тейлора для многочлена четвёртой степени: .

Найдём все производные: , . Тогда . Подставив это в формулу, получим: .

Ответ: .

22. Найти многочлен, приближающий заданную функцию в окрестности точки X0 с точностью до : .

Применяем формулу Тейлора:

.

Вычисляем последовательно:

.

Ответ: .

23. Исследовать поведение функции в окрестности точки с помощью формулы Тейлора: .

Найдём значения функции и её первых трёх производных в заданной точке:

. По формуле Тейлора . Ответ: В окрестности точки (2, -2) функция ведёт себя как степенная функция третьей степени. Точка (-2, -2) является точкой перегиба: слева - интервал вогнутости, справа - интервал выпуклости.

24. Вычислить предел с помощью формулы Тейлора: .

По формуле Тейлора . Подставим это в предел: .

Ответ: .

25. Найти асимптоты и построить эскиз графика функции: .

Область определения функции: . Функция непрерывна в каждой точке области определения. Найдём односторонние пределы в граничной точке области определения: . Отсюда следует, что прямая является вертикальной асимптотой. Исследуем функцию при :. Ищем наклонные асимптоты в виде : . Следовательно, прямая является наклонной асимптотой. Ответ: Эскиз графика представлен на рисунке.

26. Провести полное исследование поведения функции и построить её график: .

1. Область определения: . 2. Чётность, нечётность, периодичность отсутствуют, функция положительна в области определения 3. Функция имеет разрыв в точке . Исследуем поведение функции в окрестности точки разрыва: . Таким образом, прямая является вертикальной асимптотой.

4. . Следовательно, прямая является горизонтальной асимптотой. Очевидно, что других асимптот нет.

5. Первая производная . Производная в нуль не обращается. Производная остаётся отрицательной на всей числовой оси (). Следовательно, в области определения функция монотонно убывает и экстремумов не имеет.

6. Вторая производная: . Вторая производная обращается в нуль в точке . В точке вторая производная не существует. Имеем три интервала: в интервале производная - интервал выпуклости графика функции, в интервале производная - интервал вогнутости, в интервале производная - интервал вогнутости графика функции. Точка перегиба - . 7. График функции не пересекает осей координат, во всех точках . Ответ: График функции представлен на рисунке, экстремумов нет. Точка перегиба - , асимптоты: - вертикальная, - горизонтальная.

 
Яндекс.Метрика
Наверх