Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

Вариант № 05

PDF Печать E-mail

В задачах 1-9 найти общие решения уравнений и частные решения, если есть начальные условия.

1. . Уравнение является однородным. Сделаем замену Тогда . Получим уравнение , или . Разделяем переменные:

. Интегрируем уравнение: . Получим:

. Вернёмся к переменной Y, делая обратную замену U=Y/X: . Умножим равенство на X2 : . Определим постоянную С из начальных условий: , отсюда C=−1. Подставляя это значение в общее решение, получим частное решение: . Ответ: .

2. . Уравнение является линейным. Решим его методом Бернулли. Будем искать решение в виде произведения Y=U∙V, где U и V неизвестные функции, определяемые в данном случае уравнениями и или . Решим первое уравнение: или . Отсюда (произвольная постоянная добавляется при решении второго уравнения). Потенцируя, находим: . Подставим найденную функцию U во второе уравнение и решим его: или . Тогда

. Таким образом, общее решение имеет вид: . Найдём C, исходя из начальных условий: . Тогда . Таким образом, частное решение есть . Ответ: .

3. . Это уравнение Бернулли. Его можно решать непосредственно как линейное уравнение, применяя метод вариации произвольной постоянной. Решим однородное уравнение: или . Отсюда находим . Будем предполагать, что решение исходного уравнения имеет

такую же структуру, но C=C(X), т. е. , где C(X) – некоторая неизвестная функция. Определим эту функцию, подставляя данное (предполагаемое) решение в исходное уравнение. Найдём .

Тогда . Или . Разделяем переменные: . Интегрируем уравнение: . Вычислим интегралы: , . Следовательно, или . Общие решение уравнения . Воспользуемся начальными условиями: , т. е. C1=-1. Тогда частным решением будет . Ответ: .

4. .

Найдём частные производные:

, . Следовательно, уравнение является уравнением в полных дифференциалах. Левая часть этого уравнения представляет полный дифференциал некоторой функции U(X,Y), так что

и . Проинтегрируем первое уравнение по X:

. Таким образом, , где φ(Y) – произвольная функция. Найдём эту функцию, пользуясь вторым уравнением. С одной стороны

. С другой стороны, . Приравнивая эти выражения, получим: . Отсюда, . Согласно уравнению, DU=0. Решением уравнения будет U(x, y)=C. В данном случае . Ответ: .

5. Уравнение второго порядка, допускающее понижение порядка. В уравнении отсутствует искомая функция Y. Сделаем замену . Тогда . Получим линейное уравнение первого порядка: . Решаем сначала однородное уравнение: . Далее решаем непднородное уравнение методом вариации произвольной постоянной:

. Таким образом, . Определим постоянную C3, пользуясь начальным условием : . Следовательно, . Тогда . Определим C4, пользуясь вторым начальным условием : . Окончательно, .

Ответ: .

6. Линейное неоднородное уравнение второго порядка. Решим уравнение методом вариации произвольных постоянных. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два корня: . Получаем два частных решения: . Общее решение однородного уравнения имеет вид: . Будем считать, что решение неоднородного уравнения имеет такую же структуру, но С1 и С2 являются функциями переменной Х: . Тогда, в соответствии с методом вариации произвольных постоянных, неизвестные функции С1(Х) и С2(Х) определяются системой уравнений: , где F(X) – правая часть неоднородного уравнения. В данном случае имеем систему: . Складывая второе уравнение с первым: получим: . Интегрируя, получаем: . Следовательно, решением неоднородного уравнения будет или . Теперь можно вернуться к прежним обозначениям произвольных постоянных. Положим С1=С3 и С2 =С4. Окончательно, .

Ответ: .

7. . Линейное неоднородное уравнение третьего порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет три корня: . Получаем три частных решения: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Здесь множитель Х обусловлен тем, что корень характеристического уравнения R=0 совпадает с коэффициентом α в экспоненте EαX, «стоящей» в правой части уравнения (α=0). Найдём производные YЧн:: . Подставим это в исходное уравнение:

. Отсюда находим . Или . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: . Ответ: .

8. . Линейное неоднородное уравнение второго порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два корня: . Получаем два частных решения: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Найдём производные YЧн:: . Подставим это в исходное уравнение: . Отсюда находим или . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: . Воспользуемся начальными условиями: . По первому условию . Найдём . Тогда, по второму условию, . Решая систему , находим: . Частное решение уравнения будет . Ответ: .

9. . Линейное неоднородное уравнение второго порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два корня: . Получаем два частных решения: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Найдём производные YЧн::, . Подставим это в исходное уравнение:

. Отсюда находим

. Или . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: . Ответ: .

10. Решить систему линейных однородных дифференциальных уравнений первого порядка с постоянными коэффициентами , где - функции от T, M – матрица коэффициентов, при начальных условиях :

.

Запишем систему по исходным данным:

. Ищем решение в виде . Тогда . Подставляя это в систему, получим систему алгебраических уравнений, которая определяет неизвестные коэффициенты : . Приравнивая определитель системы к нулю, получим характеристическое уравнение исходной системы: . Раскроем определитель: . Или . Следовательно, . При получим систему: . Отбросим первое уравнение, как линейно зависимое. Получим . Положим . Тогда . Получили первое частное решение: . При получим систему: . Отбросим второе уравнение, как линейно зависимое. Получим . Положим . Тогда . Получили второе частное решение: .

При получим систему: . Отбросим первое уравнение, как линейно зависимое. Получим . Положим . Тогда . Получили третье частное решение: . Общее решение записывается как линейная комбинация частных решений: .

Найдём произвольные постоянные, пользуясь начальными условиями. При T=0 получим систему: . Вычтем из второго уравнения первое уравнение, получим . Подставим С2 в третье уравнение. Получим: . Следовательно, . Таким образом, частное решение системы следующее: . Ответ: .

11. Найдите уравнение кривой, проходящей через точку и обладающей свойством, что расстояние от начала координат до любой её касательной равно абсциссе точки касания.

Уравнение касательной к кривой в точке имеет вид или . Приведём это уравнение к нормальной форме. Нормирующий множитель равен: . Следовательно, . В нормальном уравнении величина есть расстояние от начала координат до прямой. По условию задачи, . Тогда .

Или . Условие должно выполняться для любой точки линии. Поэтому сделаем замену . Получим уравнение: . Это однородное уравнение первого порядка. Положим . Тогда или . Разделяем переменные и интегрируем:

. Найдём произвольную постоянную из условия : . Тогда искомое уравнение запишется так: . Ответ: .

12. Цилиндрический чурбан радиусом 3 м и весом 81 кг стоит вертикально в воде. Вес 1 м2 воды равен 1т. Найдите период колебания, которое получится, если немного приподнять чурбан, а затем отпустить его.

Пусть X(T) – глубина погружения чурбана (по нижнему основанию). На чурбан действуют силы: его вес и выталкивающее действие воды , где М – вес вытесненной воды (в килограммах): . По второму закону Ньютона . Получили уравнение или . Характеристическое уравнение имеет два корня: . Решением однородного уравнения будет функция . Частное решение неоднородного уравнения ищем в виде . Тогда . Подставляя это в уравнение, получим: . Или . Получили общее решение: . При T=0 скорость равна нулю , т. е. . Таким образом, колебания чурбана описываются уравнением . Найдём период колебаний из условия (период косинуса). Получим: . Вычисляя, получим Ответ:

 
Яндекс.Метрика
Наверх