Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

Home Методички по математике ВЫСШАЯ АЛГЕБРА (Конспект лекций для студентов физико-технического факультета)
ВЫСШАЯ АЛГЕБРА (Конспект лекций для студентов физико-технического факультета)
Фильтр     Показывать по 
Название
§01.01. Линейные пространства. Введение
§01.02. Операции на множествах
§01.03. Группа
§01.04. Поле
§01.05. Определение линейного пространства
§01.06. Следствия из аксиом линейного пространства
§01.07. Примеры линейных пространств
§01.08. Определение подпространства
§01.09. Линейная комбинация векторов. Линейная оболочка системы векторов
§01.10. Полные системы векторов
§01.11. Линейно независимые системы векторов
§01.12. Связь между полярными и линейно независимыми наборами векторов
§01.13. Базис линейного пространства. Его размерность
§01.14. Примеры
§01.15. Координаты вектора в зхаданном базисе
§01.16. Изоморфизм линейных пространств
§01.17. Базис и размерность линейного подпространства
§01.18. Линейные многообразия
§01.19. Действия с подпространствами
§01.20. Прямая сумма подпространств
§01.21.Матрицы и действия над ними. Линейное пространство матриц
§01.22. Ещё действия над матрицами
§02.01. Евклидовы и унитарные пространства
§02.02. Свойства скалярного произведения в евклидовом пространстве
§02.03. Длина вектора. Угол между векторами
§02.04. Ортогональные системы векторов
§02.05. Изоморфизм евклидовых пространств
§02.06. Унитарные пространства
§02.07. Свойства скалярного произведения в унитарном пространстве
§02.08. Длина вектора
§02.09. Ортогональные системы векторов
§02.10. Ортогональное дополнение к подпространству
§02.11. Свойства ортогонального дополнения
§02.12. Ортогональная проекция и ортогональная составляющая вектора на подпространство
§03.1. Метрические и нормированные пространства. Определение метрического пространства
§03.2. Предел последовательности
§03.3. Шары в метрическом пространстве. Ограниченные множества. Предельные точки
§03.4. Полнота метрических пространств
§03.5. Нормированные пространства
§03.6. Связь нормированных и метрических пространств
§03.7. Покоординатная сходимость и сходимость по норме
§03.8. Связь координатной сходимости и сходимости по норме
§03.9. Полнота нормированных пространств
§04.01. Теория определителей. Линейный функционал
§04.02. Пространство линейных функционалов на Vn
§04.03. Билинейный функционал
§04.04. Симметричные и антисимметричные билинейные функционалы
§04.05. Полилинейный функционал
§04.06. Определитель квадратной матрицЫ
§04.07. Свойства определителей
§04.08. Пример вычисления определителя
§04.09. Теорема Лапласа
§04.10. Некоторые приемы вычисления определителей NГО порядка
§05. 6. Однородные системы
§05.1. Системы линейных уравнений. Постановка задачи И ТЕРМИНОЛОГИЯ
§05.2. Формулы Крамера
§05.3. Обратная матрица
§05.4. Ранг матрицы
§05.5. Преобразования, не изменяющие ранг матрицы
§05.7 Неоднородные системы
§05.8. Метод Гаусса решения систем линейных уравнений. (метод исключения неизвестных)
§05.9. «Альтернатива Фредгольма»
§06.1. Билинейные и квадратичные формы. Билинейный функционал. Его матрица
§06.2. Квадратичная форма
§06.3. Классификация квадратичных форм
§06.4. Канонический вид квадратичных форм
§06.5. Критерий Сильвестра
§06.6. Закон инерции квадратичных форм
§07.1. Линейные операторы. Определение линейного оператора
§07.2. Действия над линейным оператором
 
<< Начало < Предыдущая 1 2 Следующая > Последняя >>
Страница 1 из 2
Яндекс.Метрика
Наверх