Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

Home Методички по математике Теория вероятности. Конспект лекций КПИ. 55. Свойства многомерного нормального распределения

55. Свойства многомерного нормального распределения

Все одномерные плотности вероятности - это плотности вероятности одномерной нормальной случайной величины с параметрами, определяемыми координатами вектора X и главной диагональю ковариационной матрицы B. Кроме того, подвектор вектора Из k элементов, где Также распределен нормально.

Если все коэффициенты корреляционной или ковариационной матрицы B (все ее недиагональные элементы) равны нулю, то показать самим, что компоненты случайной величины являются независимыми.

Если ,то многомерная плотность распадается на произведение одномерных, значит независимы.

Теорема.

Проводим линейное преобразование Y=AX. A - квадратная невырожденная матрица, тогда вектор Y также имеет n-мерное нормальное распределение вида

Следствие: Из доказательства теоремы вытекает, что ковариационная матрица

Оператор A переводит произвольную область из арифметического пространства Rn в некоторую область того же пространства.

Рассмотрим произвольную область S, принадлежащую пространству элементарных событий случайной многомерной величины X. Ей соответствует область D в пространстве элементарных событий случайного вектора Y. При этом

Запишем эти вероятности

Где |I| - якобиан перехода

Т. к. область S и соответственно D произвольны, то плотность вероятности случайного вектора x равна

N-мерная плотность вероятности случайного вектора Y равна

Преобразуем показатель степени e

Можно показать, что если нормальное распределение имеет данный вид, то B - ее ковариационная матрица

Следствие.

- многомерный нормальный вектор. A - прямоугольная матрица Тогда Y=AX имеет нормальное распределение вида

Y - m-мерный вектор.

Для определенности положим, что матрица A имеет вид

A = (A1 A2)

A1 - квадратная матрица размером

A2 - матрица размерности

Рассмотрим матрицу размерности . Считается, что m первых столбцов независимы.

равен определителю полученной квадратной матрицы и не равен нулю.

E - единственная квадратная матрица размерности

Следовательно, на основании доказанной теоремы, вектор Y имеет многомерное нормальное распределение.

Z=CX

Компоненты вектора Z имеют вид

Пусть матрица А произвольная, но т. к. ее ранг равен m она содержит m линейно независимых столбцов. Путем перестановки столбцом соберем эти столбцы в первые m. И соответствующим образом пронумеруем компоненты вектора Х. Попадаем в предыдущий случай.

 
Яндекс.Метрика
Наверх