Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

07.3. Основная формула интегрального исчисления

PDF Печать E-mail

ТЕОРЕМА 4. Непрерывная на отрезке [А, b] функция F(X) имеет на этом отрезке первообразную. Одной из первооб­разных является функция

В формуле (7.8) переменная интегрирования обозначена буквой T, чтобы избежать путаницы с верхним переменным пределом Х.

Поскольку всякая другая первообразная отличается от F(X) На постоянную величину, то связь между неопределенным и определенным интегралами имеет вид

Где С — произвольная постоянная.

Согласно теореме 7.4 непрерывная на отрезке [А, B] функция F(X) имеет первообразную, которая определяется формулой

Где С — некоторая постоянная. Подставляя в (7.9) Х = А, с учетом свойства 1 определенного интеграла получаем

Тогда из (7.9) имеем

Полагая Х = b, получаем формулу

Равенство (7.10) называется Основной формулой интег­рального исчисления, или Формулой Ньютона-Лейбница.

Разность F(B) — F(A) условно записывают символом F(X), т. е.

Формула (7.11) дает широкие возможности вычисления оп­ределенных интегралов. Нужно вычислить неопределенный ин­теграл и затем найти разность значений первообразной соглас­но (7.11). Рассмотрим примеры вычисления определенных ин­тегралов.

 
Яндекс.Метрика
Наверх