Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

03.6. Понятие непрерывности функции

PDF Печать E-mail

Понятие непрерывности функции является фундаментальным в математическом анализе. Сформулируем его на языке последовательности. Пусть функция F(X) определена в некоторой окрестности точки А.

Определение 1. Функция F(X) называется Непрерывной в точке а, если предел этой функции и ее значение в этой точке равны, т. е.

Так как X = а, то это равенство можно переписать в следующей форме:

Определение 2. Функция F(X) называется Непрерывной спра­ва (слева) в точке А, если правый (левый) предел этой функции в точке А равен значению функции в этой точке.

Символическая запись непрерывности функции справа (слева):

Если функция F(X) непрерывна в точке А слева и справа, то она непрерывна в этой точке.

Точки, в которых функция не является непрерывной, назы­ваются Точками разрыва функции.

Рассмотрим пример точек, в которых функция не является непрерывной.

Пример 1. Функция F(X) = sign X (п. 3.1). Как было показано ранее, в точке Х = 0 существуют левый и правый пределы этой функции, равные соответственно —1 и +1. Сама же точка Х = 0 является точкой разрыва функции, поскольку пределы слева и справа не равны значению F(0) = 0.

Действия над непрерывными в точке функциями определя­ет следующая фундаментальная теорема.

ТЕОРЕМА 7. Пусть функции f(x) и g(х) непрерывны в точке а. Тогда функции f(x) ± G(X), f(x)g(x) и F(X)/G(X) также непрерывны в точке а (частное при условии G(A) ≠ 0).

 
Яндекс.Метрика
Наверх