Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

03.5. Бесконечно малые и бесконечно большие функции

PDF Печать E-mail

Определение 1. Функция F(X) называется Бесконечно малой функцией (или просто бесконечно малой) в точке X = А, если предел ее в этой точке равен нулю: F(X) = 0.

Аналогично определяются бесконечно малые при Х , Х ±, Х А+ и Х а—.

ТЕОРЕМА 6. Алгебраическая сумма и произведение конечно­го числа бесконечно малых функций в точке а, как и произве­дение бесконечно малой на ограниченную функцию, являются бесконечно малыми функциями в точке а.

Определение 2. Функция F(X) называется Бесконечно большой Функцией в точке А (или просто бесконечно большой), если для любой сходящейся к А последовательности N} значений аргумента соответствующая последовательность {F(Xn)} зна­чений функции является бесконечно большой.

В этом случае пишут F(X) = ( F(X) = + или F(X) = -) и говорят, что функция имеет в точке А бесконечный предел (+ или -). По аналогии с конечными односторонними пределами определены и односторонние бесконеч­ные пределы:

Аналогично определяются бесконечно большие функции при X, X+, X-.

Между бесконечно малыми и бесконечно большими функ­циями существует та же связь, что и между соответствующи­ми последовательностями, т. е. если α(х) — бесконечно малая функция при Х А, то F(X) = 1/α(х) — бесконечно большая функция, и наоборот.

 
Яндекс.Метрика
Наверх