Так же решение контрольных, написание курсовых и рефератов по другим предметам.

logo

Решение контрольных по математике!!!

Связаться с нами

E-mail: matica@narod.ru

ICQ 229036787, ICQ 320619

 

01.4. Грани числовых множеств

PDF Печать E-mail

Будем говорить, что множество Х ограничено сверху (снизу), если существует число D, такое, что для любого Х Х Выполняется неравенство ХD (хD). Число D тогда называется Верхней (нижней) гранью множества X. Множест­ва, ограниченные снизу и сверху, называются ограниченными. Любой конечный промежуток ограничен. Интервалы (А, +) и (-, B) представляют собой множества, ограниченные соот­ветственно снизу (сверху), но не ограниченные сверху (снизу). Вся числовая прямая не ограничена ни снизу, ни сверху.

Любое ограниченное сверху (снизу) множество имеет бесконечное число верхних (нижних) граней. Действительно, если число D является верхней гранью множества X, То и любое чис­ло D1 > D, согласно определению верхней грани, также будет верхней гранью этого множества. Наименьшая верхняя грань множества X, ограниченного сверху, называется Точной верх­ней гранью этого множества; она обозначается символом supX. Наибольшая нижняя грань ограниченного снизу множества Х Называется Точной нижней гранью этого множества и обозна­чается символом infX. Эти символы заимствованы из латин­ского языка: Supremum — наивысший и Infimum — наиниз­ший.

Приведем некоторые примеры. Пусть Х = (А, B). В таком cлучае числа А и B являются точными нижней и верхней граня­ми множества X, т. е. А = Inf X, B = sup X. Пусть X = (-, B). Тогда нижних граней (в том числе и точной нижней грани) множество Х не имеет, а число B является его точной верхней гранью: B = sup X.

Известна следующая теорема о существовании точной верх­ней (нижней) грани числового множества, которую мы приво­дим ниже без доказательства.

ТЕОРЕМА 1. Если непустое числовое множество ограниче­но сверху (снизу), то оно имеет точную верхнюю (нижнюю) грань.

 
Яндекс.Метрика
Наверх