30. Погрешности численного решения дифференциального уравнения |
Один из серьезных недостатков методов Рунге - Кутты состоит в отсутствии простых способов оценки ошибки интегрирования. Все же без некоторой оценки ошибки трудно правильно выбрать величину шага интегрирования Пусть
Где Так как для метода, описываемого формулами (7.4.13),
Формула (7.5.1) выведена в предположении, что на каждом шаге интегрирования допускается погрешность, приблизительно пропорциональная Это довольно точная оценка, однако для ее использования необходимо вычислять решение дважды. Предложено несколько полуэмпирических критериев смены шага и выбора оптимального шага интегрирования при условии достижения заданной точности. Например, используется такое оценочное правило: если Существуют более точные методы оценки погрешности интегрирования, основанные на использовании для контроля точности двух различных методов Рунге - Кутты. Один из самых эффективных - метод Рунге - Кутты - Фельберга. В этом методе для оценки погрешности метода пятого порядка используются формулы метода четвертого порядка точности, причем на одном шаге интегрирования требуется всего лишь шесть вычислений значений правой части
|