17. Теоремы о среднем. Теорема Ролля

(Ролль (1652-1719)- французский математик)

Если функция F(X) непрерывна на отрезке [A, B], дифференцируема на интервале (а, B) и значения функции на концах отрезка равны F(A) = F(B), то на интервале (а, B) существует точка E, A < E < B, в которой производная функция F(X) равная нулю,

F¢(E) = 0.

Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка e такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки.

Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. Возможны два различных случая М = m и M ¹ m.

Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае за e можно принять любую точку интервала.

Пусть М = m. Так значения на концах отрезка равны, то хотя бы одно из значений М или m функция принимает внутри отрезка [a, b]. Обозначим e, a < e < b точку, в которой f(e) = M. Так как М - наибольшее значение функции, то для любого Dх ( будем считать, что точка e + Dх находится внутри рассматриваемого интервала) верно неравенство:

DF(E) = F(E + DX) – F(E) £ 0

При этом

Но так как по условию производная в точке e существует, то существует и предел .

Т. к. и , то можно сделать вывод:

Теорема доказана.

Теорема Ролля имеет несколько Следствий:

1) Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем f(a) = f(b) = = 0, то существует по крайней мере одна точка e, a < e < b, такая, что f¢(e) = 0. Т. е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.

2) Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная (n – 1) – го порядка равна нулю.

© 2011-2024 Контрольные работы по математике и другим предметам!