2.2 Анализ системы уравнений Френе

Система уравнений Френе (1.9), (2.2) и (`2.5) характеризует перемещение трёхгранника Френе, который определяется векторами , , вдоль заданной кривой. При описании некоторых физических процессов, например, в гидроаэромеханике, вместо неподвижной координатной системы с успехом используют Подвижный (естественный) базис, составленный из указанных векторов, который перемещается вдоль траектории движения вместе с некоторой заданной точкой материальной среды.

Систему уравнений Френе разобьём на две подсистемы, первая из которых записывается при =0, а вторая при

, . (2.7)

В первой подсистеме вектор бинормали является постоянным и определяет ось вращения трёхгранника Френе при движении вдоль кривой; во второй подсистеме ось вращения – касательная, которая определяется фиксированным вектором . Таким образом, в первом случае получаем движение в соприкасающейся плоскости, причем скорость вращения определяется коэффициентом , а во втором – в нормальной плоскости, при этом скорость вращения определяется коэффициентом . В силу линейности уравнений полную систему уравнений получаем сложением двух подсистем (2.7). Соответственно полная скорость вращения состоит из двух компонент

.

Отметим также, что система уравнений Френе может быть в некоторых случаях проинтегрирована, среди этих случаев выделим простейшие:

1) ,тогда . Поскольку , то .

Вводя координаты векторов , , , получаем, исключая параметр , известные уравнения прямой линии

.

2) =0, тогда , при этом получаем плоскую кривую.

3) Винтовая линия (см. пример в разделе 1.6). Было показано, что кривизна K Вычисления показывают, что и кручение Оказывается, что это единственная линия, у которых кручение пропорционально кривизне .

В общем случае три уравнения Френе связывают девять скалярных компонент трёх векторов . Однако существуют ещё шесть условий, наложенные на эти компоненты. Это условия ортогональности векторов, а также условия, вытекающие из того факта, что эти вектора единичные

, . (2.8)

Общее число уравнений ((1.9), (2.2),(2.5) и (2.8)) равно девяти, что совпадает с числом скалярных компонент векторов . Кроме того, в уравнения Френе входят кривизна и кручение . Теорема о существовании и единственности решения системы уравнений Френе, дополненной соотношениями (2.8), формулируется здесь без доказательства.

Теорема. Если заданы кривизна и кручение как непрерывные функции длины дуги , то существует единственное решение системы уравнений Френе (1.9), (2.2), (2.5) , и , удовлетворяющее соотношениям (2.8) и следующим начальным условиям: в данной точке задан естественный трёхгранник Френе , и . Это решение определено в некоторой окрестности точки .

В свою очередь, полученный естественный трёхгранник Френе однозначно определяет пространственную кривую, а именно, текущий радиус-вектор .

© 2011-2024 Контрольные работы по математике и другим предметам!