51. Логарифмические уравнения

Логарифмическим уравнением называется уравнение, в котором неизвестная величина содержится под знаком логарифма или в его основании.

При решении логарифмических уравнений обязательно учитывается ОДЗ логарифма. Если ОДЗ найти сложно, то можно только выписать условия, а затем проверить полученные корни подстановкой в ОДЗ (можно проверять подстановкой в уравнение, не выписывая ОДЗ).

Типы уравнений и способы их решения

Всюду далее F(X), G(X), H(X) – некоторые выражения с переменной (число).

I тип: уравнение вида

(6.8)

Где C Î R.

ОДЗ:

На указанной ОДЗ уравнение (6.8) решают по определению логарифма:

II тип: уравнение вида

(6.9)

ОДЗ:

На основании равенства логарифмов, уравнение (6.9) сводится к равносильному ему (на указанной ОДЗ) уравнению:

(6.10)

ОДЗ:

Данное уравнение на ОДЗ равносильно совокупности уравнений:

III тип: уравнения, решаемые заменой переменной

(6.11)

Где F – некоторое выражение относительно

Необходимо определить ОДЗ уравнения, учитывая все условия существования логарифма и выражения F.

Далее заменяют и решают уравнение

Если – корни последнего уравнения, то, после возвращения к старой переменной, необходимо решить совокупность

Полученные корни проверяют по ОДЗ.

З а м е ч а н и е. Если вместо какого-либо выражения F(X), G(X), H(X) уравнения (6.8)–(6.11) содержат число, то соответствующее условие не записывают в ОДЗ.

Пример 1. Решить уравнение

Решение. Находим ОДЗ:

Решение системы:

Преобразуем уравнение к виду

Получили уравнение I типа, которое решается по определению логарифма:

Откуда

Из полученных значений корень Х = 4 не подходит по ОДЗ.

Получаем ответ: Х = 6.

Пример 2. Решить уравнение

Решение. Записываем условия, определяющие ОДЗ:

Заданное уравнение относится к I типу. Получаем:

Снова используем определение логарифма:

т. е. откуда

Полученные корни проверяем подстановкой в условия, определяющие ОДЗ уравнения. Убеждаемся, что корень подходит, а корень не подходит по ОДЗ.

Получаем ответ:

Пример 3. Решить уравнение

Решение. Записываем условия, определяющие ОДЗ:

Данное уравнение относится ко II типу, т. е. решается по свойству равенства логарифмов. Получаем:

т. е.

Раскладываем левую часть на множители:

откуда получаем

Подставляем найденные значения в ОДЗ, находим, что уравнение имеет только один корень Х = 3.

В ответе имеем: Х = 3.

Пример 4. Решить уравнение

Решение. Находим ОДЗ:

т. е.

Данное уравнение относится ко II типу. Решаем совокупность:

По ОДЗ подходит только корень Х = 2, так как

Получаем ответ: Х = 2.

Пример 5. Решить уравнение

Решение. ОДЗ: Преобразуем уравнение:

Имеем квадратное уравнение относительно (уравнение III типа). Заменяем

Решая полученное квадратное уравнение, находим корни Возвращаемся к переменной X:

Оба корня подходят по ОДЗ, получаем ответ:

Пример 6. Решить уравнение

Решение. Запишем условия ОДЗ:

Воспользуемся тем, что

Тогда

Решаем полученное уравнение как уравнение I типа:

Среди целых делителей свободного члена находим корень Х = –2. Он подходит по ОДЗ.

Пришли к ответу: Х = –2.

Пример 7. Решить уравнение

Решение. ОДЗ: т. е.

Воспользуемся свойствами модуля: если и Тогда уравнение перепишется в виде

Заменяем и приходим к квадратному уравнению

Корнями которого являются числа

Возвращаемся к старой переменной:

Раскрываем модуль, используя ОДЗ:

Получаем ответ:

Пример 8. Решить уравнение

Решение. ОДЗ: т. е. Х Î R.

Рассмотрим левую часть уравнения:

Преобразуем правую часть. Получим:

Используя функциональный метод решения, заключаем, что решением исходного уравнения является решение системы

т. е. Х = –2.

Получаем ответ: Х = –2.

Пример 9. Найти сумму корней уравнения

Решение. Для данного уравнения характерно следующее: если Х – корень уравнения, то и (–Х) тоже корень уравнения. Поэтому если уравнение имеет корни, то их сумма будет равна нулю. Подстановкой находим корни

Получаем ответ: 0.

© 2011-2024 Контрольные работы по математике и другим предметам!