Ряды

Решение типового варианта контрольной работы. Ряды

Пример 1. Исследовать на сходимость числовые ряды:

А) 

Б) 

В) 

Г) 

Д) 

Е) 

Ж) 

З) 

Решение.

А)  В данном случае

Вычислим

Следовательно, ряд расходится.

Б)  Поскольку в записи общего члена ряда есть показательная функция , то используем признак Даламбера.

Для рассматриваемого ряда

;

Вычислим

Следовательно, по признаку Даламбера, исходный ряд сходится.

В)  Так как в записи общего члена ряда есть факториал (), то используем признак Даламбера. Для исследуемого ряда

Вычислим

В пределе получили бесконечность, следовательно, исследуемый ряд расходится.

Г)  Воспользуемся радикальным признаком Коши. Здесь

Вычислим

Полученное значение больше 1, следовательно, ряд расходится.

Исследуем данный ряд с помощью интегрального признака Коши. Составим соответствующий интеграл и вычислим его

Интеграл сходится, следовательно, исследуемый ряд сходится.

Составим ряд, эквивалентный исходному, оставив в числителе и знаменателе лишь старшие степени n:

Полученный ряд эквивалентен исходному, так как

Таким образом, исходный ряд и ряд сходятся и расходятся одновременно. Т. к. ряд сходится, следовательно, исходный ряд также сходится.

Д)  Так как , то

.

Ряд расходится , следовательно, исходный ряд также расходится.

Оценим общий член ряда:

.

Ряд

Ряд сходится , следовательно, эквивалентный ряд также сходится. Т. к. из сходимости большего ряда следует сходимость меньшего, то исходный ряд сходится.

Пример2. Найти область сходимости ряда .

Решение. Воспользуемся признаком Даламбера:

Ряд сходится, если

или ;

или ,

.

Ряд расходится, если .

Неопределенный случай: т. е. или ,

Пусть : ‑ сходится.

Ряд сходится как эквивалентный сходящемуся ряду.

Пусть : .

Этот ряд – знакочередующийся. Исследуя его на абсолютную сходимость (рассматриваем ряд, состоящий из абсолютных величин), получим ряд как и при , а он сходится. Т. к. ряд, состоящий из абсолютных величин, сходится, то данный ряд сходится абсолютно.

Получили, что ‑ область сходимости ряда.

Пример 3. Вычислить с точностью интеграл .

Решение. Запишем разложение функции в ряд Маклорена:

+...

Вычислим интеграл

.

Заметим, что при вычислении интеграла получаем знакочередующийся ряд. Мы отбрасываем при вычислении все слагаемые, начиная со слагаемого, меньшего по абсолютной величине заданной точности .

Пример 4. Найти три первые (отличные от 0) члена разложения в степенной ряд решения задачи Коши .

Решение.

Для представления решения в виде ряда Маклорена необходимо найти первые три отличные от нуля значения . По условию задачи Выразим из уравнения :

Найдем , продифференцировав обе части равенства по :

Окончательно получим:

.

Пример 5. Разложить данную функцию в ряд Фурье

А)  в интервале (-2, 2):

Б)  по синусам на интервале .

Решение.

Разложение периодической (период ) функции имеет вид:

А) В нашем примере L=2.

Где

Вычислим значения интегралов-слагаемых по отдельности.

;

Используя формулу интегрирования по частям, получаем

.

Вычислим значения интегралов-слагаемых по отдельности.

Аналогично предыдущему

И окончательно получим:

Подставляя полученные значения в разложение , получим:

Б) Продолжим функцию на отрезок нечетным образом (рис. 1).

Рис. 1

Тогда получим нечетную функцию, ряд Фурье которой содержит только синусы, т. е. .

Найдем коэффициенты , используя формулу:

Для вычисления первого и третьего интегралов используем метод интегрирования по частям:

.

Таким образом, .